Abnormal dental follicle cells: A crucial determinant in tooth eruption disorders (Review)
- Authors:
- Jiahao Chen
- Ying Ying
- Huimin Li
- Zhuomin Sha
- Jiaqi Lin
- Yongjia Wu
- Yange Wu
- Yun Zhang
- Xuepeng Chen
- Weifang Zhang
-
Affiliations: Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China, Department of Child Health, Yongkang Women and Children's Health Hospital, Yongkang, Zhejiang 321300, P.R. China - Published online on: July 15, 2024 https://doi.org/10.3892/mmr.2024.13292
- Article Number: 168
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP and Sucov HM: Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development. 127:1671–1679. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Sun Q, Xie L, Jiang Z, Feng L, Yu M, Guo W and Tian W: Comparison of the odontogenic differentiation potential of dental follicle, dental papilla, and cranial neural crest cells. J Endod. 41:1091–1099. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bastos VC, Gomez RS and Gomes CC: Revisiting the human dental follicle: From tooth development to its association with unerupted or impacted teeth and pathological changes. Dev Dyn. 251:408–423. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wise GE and Yao S: Regional differences of expression of bone morphogenetic protein-2 and RANKL in the rat dental follicle. Eur J Oral Sci. 114:512–516. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Pan J, Wu P, Huang R, Du W, Zhou Y, Wan M, Fan Y, Xu X, Zhou X, et al: Dental follicle cells: roles in development and beyond. Stem Cells Int. 2019:91596052019. View Article : Google Scholar : PubMed/NCBI | |
Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C and Hoffmann KH: Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol. 24:155–165. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bi R, Lyu P, Song Y, Li P, Song D, Cui C and Fan Y: Function of dental follicle progenitor/stem cells and their potential in regenerative medicine: From mechanisms to applications. Biomolecules. 11:9972021. View Article : Google Scholar : PubMed/NCBI | |
Yao S, Pan F, Prpic V and Wise GE: Differentiation of stem cells in the dental follicle. J Dent Res. 87:767–771. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu GT, Liang A and Liu S: Concise reviews: Characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells. 33:627–638. 2015. View Article : Google Scholar : PubMed/NCBI | |
Morsczeck C, Völlner F, Saugspier M, Brandl C, Reichert TE, Driemel O and Schmalz G: Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig. 14:433–440. 2010. View Article : Google Scholar : PubMed/NCBI | |
Richman JM: Shedding new light on the mysteries of tooth eruption. Proc Natl Acad Sci USA. 116:353–355. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zeng L, He H, Sun M, Gong X, Zhou M, Hong Y, Wu Y, Chen X and Chen Q: Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther. 13:4862022. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Cui C, Guan SY, Xu RS, Zheng LW, Zhou XD and Fan Y: Function of orofacial stem cells in tooth eruption: An evolving perspective. Chin J Dent Res. 24:143–152. 2021.PubMed/NCBI | |
Suri L, Gagari E and Vastardis H: Delayed tooth eruption: Pathogenesis, diagnosis, and treatment. A literature review. Am J Orthod Dentofacial Orthop. 126:432–445. 2004. View Article : Google Scholar : PubMed/NCBI | |
Marks SC Jr and Cahill DR: Regional control by the dental follicle of alterations in alveolar bone metabolism during tooth eruption. J Oral Pathol. 16:164–169. 1987. View Article : Google Scholar : PubMed/NCBI | |
Cahill DR and Marks SC Jr: Tooth eruption: Evidence for the central role of the dental follicle. J Oral Pathol. 9:189–200. 1980. View Article : Google Scholar : PubMed/NCBI | |
Roulias P, Kalantzis N, Doukaki D, Pachiou A, Karamesinis K, Damanakis G, Gizani S and Tsolakis AI: Teeth eruption disorders: A critical review. Children (Basel). 9:7712022.PubMed/NCBI | |
Rasmussen P and Kotsaki A: Inherited retarded eruption in the permanent dentition. J Clin Pediatr Dent. 21:205–211. 1997.PubMed/NCBI | |
Raghoebar GM, Boering G, Vissink A and Stegenga B: Eruption disturbances of permanent molars: A review. J Oral Pathol Med. 20:159–166. 1991. View Article : Google Scholar : PubMed/NCBI | |
Raghoebar GM, Boering G and Vissink A: Clinical, radiographic and histological characteristics of secondary retention of permanent molars. J Dent. 19:164–170. 1991. View Article : Google Scholar : PubMed/NCBI | |
Jain S, Raza M, Sharma P and Kumar P: Unraveling impacted maxillary incisors: The why, when, and how. Int J Clin Pediatr Dent. 14:149–157. 2021. View Article : Google Scholar : PubMed/NCBI | |
Morsczeck C, De Pellegrin M, Reck A and Reichert TE: Evaluation of current studies to elucidate processes in dental follicle cells driving osteogenic differentiation. Biomedicines. 11:27872023. View Article : Google Scholar : PubMed/NCBI | |
Oosterkamp BC, Ockeloen CW, Carels CE and Kuijpers-Jagtman AM: Tooth eruption disturbances and syndromes. Ned Tijdschr Tandheelkd. 121:233–238. 2014.(In Dutch). View Article : Google Scholar : PubMed/NCBI | |
Wise GE: Cellular and molecular basis of tooth eruption. Orthod Craniofac Res. 12:67–73. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wise GE, Frazier-Bowers S and D'Souza RN: Cellular, molecular, and genetic determinants of tooth eruption. Crit Rev Oral Biol Med. 13:323–334. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li XX, Wang MT, Wu ZF, Sun Q, Ono N, Nagata M, Zang XL and Ono W: Etiological mechanisms and genetic/biological modulation related to PTH1R in primary failure of tooth eruption. Calcif Tissue Int. Jun 4–2024.(Epub ahead of print). View Article : Google Scholar | |
Guo X and Duan X: Genotype-phenotype analysis of selective failure of tooth eruption-A systematic review. Clin Genet. 104:287–297. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hanisch M, Hanisch L, Kleinheinz J and Jung S: Primary failure of eruption (PFE): A systematic review. Head Face Med. 14:52018. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi T, Hosomichi K, Shirota T, Miyamoto Y, Ono W and Ono N: Primary failure of tooth eruption: Etiology and management. Jpn Dent Sci Rev. 58:258–267. 2022. View Article : Google Scholar : PubMed/NCBI | |
Librizzi M, Naselli F, Abruscato G, Luparello C and Caradonna F: Parathyroid hormone related protein (PTHrP)-associated molecular signatures in tissue differentiation and non-tumoral diseases. Biology (Basel). 12:9502023.PubMed/NCBI | |
Wysolmerski JJ, Broadus AE, Zhou J, Fuchs E, Milstone LM and Philbrick WM: Overexpression of parathyroid hormone-related protein in the skin of transgenic mice interferes with hair follicle development. Proc Natl Acad Sci USA. 91:1133–1137. 1994. View Article : Google Scholar : PubMed/NCBI | |
Wysolmerski JJ, McCaughern-Carucci JF, Daifotis AG, Broadus AE and Philbrick WM: Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development. 121:3539–3547. 1995. View Article : Google Scholar : PubMed/NCBI | |
Vasavada RC, Cavaliere C, D'Ercole AJ, Dann P, Burtis WJ, Madlener AL, Zawalich K, Zawalich W, Philbrick W and Stewart AF: Overexpression of parathyroid hormone-related protein in the pancreatic islets of transgenic mice causes islet hyperplasia, hyperinsulinemia, and hypoglycemia. J Biol Chem. 271:1200–1208. 1996. View Article : Google Scholar : PubMed/NCBI | |
Foley J, Longely BJ, Wysolmerski JJ, Dreyer BE, Broadus AE and Philbrick WM: PTHrP regulates epidermal differentiation in adult mice. J Invest Dermatol. 111:1122–1128. 1998. View Article : Google Scholar : PubMed/NCBI | |
Nagata M, Ono N and Ono W: Mesenchymal progenitor regulation of tooth eruption: A view from PTHrP. J Dent Res. 99:133–142. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Liao L, Li Y, Xu Y, Guo W, Tian W and Zou S: Parathyroid hormone-related peptide (1–34) promotes tooth eruption and inhibits osteogenesis of dental follicle cells during tooth development. J Cell Physiol. 234:11900–11911. 2019. View Article : Google Scholar : PubMed/NCBI | |
Obara N, Suzuki Y and Takeda M: Gene expression of beta-catenin is up-regulated in inner dental epithelium and enamel knots during molar tooth morphogenesis in the mouse. Cell Tissue Res. 325:197–201. 2006. View Article : Google Scholar : PubMed/NCBI | |
MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wodarz A and Nusse R: Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 14:59–88. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ouyang H, McCauley LK, Berry JE, Saygin NE, Tokiyasu Y and Somerman MJ: Parathyroid hormone-related protein regulates extracellular matrix gene expression in cementoblasts and inhibits cementoblast-mediated mineralization in vitro. J Bone Miner Res. 15:2140–2153. 2000. View Article : Google Scholar : PubMed/NCBI | |
Philbrick WM, Dreyer BE, Nakchbandi IA and Karaplis AC: Parathyroid hormone-related protein is required for tooth eruption. Proc Natl Acad Sci USA. 95:11846–11851. 1998. View Article : Google Scholar : PubMed/NCBI | |
Heinrich J, Bsoul S, Barnes J, Woodruff K and Abboud S: CSF-1, RANKL and OPG regulate osteoclastogenesis during murine tooth eruption. Arch Oral Biol. 50:897–908. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ibáñez L, Nácher-Juan J, Terencio MC, Ferrándiz ML and Alcaraz MJ: Osteostatin inhibits M-CSF+RANKL-induced human osteoclast differentiation by modulating NFATc1. Int J Mol Sci. 23:85512022. View Article : Google Scholar : PubMed/NCBI | |
Shiyan H, Nanquan R, Shuhao X and Xiaobing L: Research progress on the cellular and molecular mechanisms of tooth eruption. Hua Xi Kou Qiang Yi Xue Za Zhi. 34:317–321. 2016.(In Chinese). PubMed/NCBI | |
Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C and Tsuda E: Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 39:19–26. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Wang J, Zhang Y, Zhu G, Li YP, Ping J and Chen W: Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts. Bone. 114:161–171. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cui W, Cuartas E, Ke J, Zhang Q, Einarsson HB, Sedgwick JD, Li J and Vignery A: CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts. Proc Natl Acad Sci USA. 104:14436–14441. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ono W, Sakagami N, Nishimori S, Ono N and Kronenberg HM: Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nat Commun. 7:112772016. View Article : Google Scholar : PubMed/NCBI | |
Dean T, Vilardaga JP, Potts JT Jr and Gardella TJ: Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol Endocrinol. 22:156–166. 2008. View Article : Google Scholar : PubMed/NCBI | |
Martin TJ, Sims NA and Seeman E: Physiological and pharmacological roles of PTH and PTHrP in bone using their shared receptor, PTH1R. Endocr Rev. 42:383–406. 2021. View Article : Google Scholar : PubMed/NCBI | |
Aziz S, Hermann NV, Dunø M, Risom L, Daugaard-Jensen J and Kreiborg S: Primary failure of eruption of teeth in two siblings with a novel mutation in the PTH1R gene. Eur Arch Paediatr Dent. 20:295–300. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kanno CM, de Oliveira JA, Garcia JF, Roth H and Weber BH: Twenty-year follow-up of a familial case of PTH1R-associated primary failure of tooth eruption. Am J Orthod Dentofacial Orthop. 151:598–606. 2017. View Article : Google Scholar : PubMed/NCBI | |
Frazier-Bowers SA, Simmons D, Wright JT, Proffit WR and Ackerman JL: Primary failure of eruption and PTH1R: The importance of a genetic diagnosis for orthodontic treatment planning. Am J Orthod Dentofacial Orthop. 137:160–161. e1–e7. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stutz C, Wagner D, Gros CI, Sayeh A, Gegout H, Kuchler-Bopp S and Strub M: Primary failure of eruption and tooth resorption. Orthod Fr. 93:283–288. 2022.(In French). PubMed/NCBI | |
Decker E, Stellzig-Eisenhauer A, Fiebig BS, Rau C, Kress W, Saar K, Rüschendorf F, Hubner N, Grimm T and Weber BH: PTHR1 loss-of-function mutations in familial, nonsyndromic primary failure of tooth eruption. Am J Hum Genet. 83:781–786. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wise GE and King GJ: Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res. 87:414–434. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wise GE, Yao S and Henk WG: Bone formation as a potential motive force of tooth eruption in the rat molar. Clin Anat. 20:632–639. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li J, Parada C and Chai Y: Cellular and molecular mechanisms of tooth root development. Development. 144:374–384. 2017. View Article : Google Scholar : PubMed/NCBI | |
Takahashi A, Nagata M, Gupta A, Matsushita Y, Yamaguchi T, Mizuhashi K, Maki K, Ruellas AC, Cevidanes LS, Kronenberg HM, et al: Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proc Natl Acad Sci USA. 116:575–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tokavanich N, Gupta A, Nagata M, Takahashi A, Matsushita Y, Yatabe M, Ruellas A, Cevidanes L, Maki K, Yamaguchi T, et al: A three-dimensional analysis of primary failure of eruption in humans and mice. Oral Dis. 26:391–400. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang XP: Tooth eruption without roots. J Dent Res. 92:212–214. 2013. View Article : Google Scholar : PubMed/NCBI | |
Vuong LT and Mlodzik M: Different strategies by distinct Wnt-signaling pathways in activating a nuclear transcriptional response. Curr Top Dev Biol. 149:59–89. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tokavanich N, Wein MN, English JD, Ono N and Ono W: The role of Wnt signaling in postnatal tooth root development. Front Dent Med. 2:7691342021. View Article : Google Scholar : PubMed/NCBI | |
Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, et al: Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol. 313:210–224. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Yang G, Wu X, Xie J, Yang X and Li T: Disruption of Wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth. Int J Biol Sci. 9:228–236. 2013. View Article : Google Scholar : PubMed/NCBI | |
Weivoda MM, Ruan M, Hachfeld CM, Pederson L, Howe A, Davey RA, Zajac JD, Kobayashi Y, Williams BO, Westendorf JJ, et al: Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res. 31:65–75. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Zeve D, Suh JM, Wang X, Du Y, Zerwekh JE, Dechow PC, Graff JM and Wan Y: Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol Cell Biol. 31:4706–4719. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim TH, Bae CH, Jang EH, Yoon CY, Bae Y, Ko SO, Taketo MM and Cho ES: Col1a1-cre mediated activation of β-catenin leads to aberrant dento-alveolar complex formation. Anat Cell Biol. 45:193–202. 2012. View Article : Google Scholar : PubMed/NCBI | |
Glass DA II, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA and Karsenty G: Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 8:751–764. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nie B, Zhang SY, Guan SM, Zhou SQ and Fang X: Role of Wnt/β-catenin pathway in the arterial medial calcification and its effect on the OPG/RANKL system. Curr Med Sci. 39:28–36. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim TH, Lee JY, Baek JA, Lee JC, Yang X, Taketo MM, Jiang R and Cho ES: Constitutive stabilization of ß-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem Biophys Res Commun. 412:549–555. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Yuan X, Perez KC, Hyman S, Wang L, Pellegrini G, Salmon B, Bellido T and Helms JA: Aberrantly elevated Wnt signaling is responsible for cementum overgrowth and dental ankylosis. Bone. 122:176–183. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD and MacDougald OA: Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci USA. 102:3324–3329. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bennett CN, Ouyang H, Ma YL, Zeng Q, Gerin I, Sousa KM, Lane TF, Krishnan V, Hankenson KD and MacDougald OA: Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res. 22:1924–1932. 2007. View Article : Google Scholar : PubMed/NCBI | |
Thesleff I and Nieminen P: Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol. 8:844–850. 1996. View Article : Google Scholar : PubMed/NCBI | |
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B and Jin Y: Mesenchymal condensation in tooth development and regeneration: A focus on translational aspects of organogenesis. Physiol Rev. 103:1899–1964. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Cox MK, Coricor G, MacDougall M and Serra R: Inactivation of Tgfbr2 in Osterix-Cre expressing dental mesenchyme disrupts molar root formation. Dev Biol. 382:27–37. 2013. View Article : Google Scholar : PubMed/NCBI | |
Massagué J: TGF-beta signal transduction. Annu Rev Biochem. 67:753–791. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ko SO, Chung IH, Xu X, Oka S, Zhao H, Cho ES, Deng C and Chai Y: Smad4 is required to regulate the fate of cranial neural crest cells. Dev Biol. 312:435–447. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Yang G, Weng T, Du J, Wang X, Zhou J, Wang S and Yang X: Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice. Mol Cell Biol. 29:5941–5951. 2009. View Article : Google Scholar : PubMed/NCBI | |
Beederman M, Lamplot JD, Nan G, Wang J, Liu X, Yin L, Li R, Shui W, Zhang H, Kim SH, et al: BMP signaling in mesenchymal stem cell differentiation and bone formation. J Biomed Sci Eng. 6:32–52. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fabregat I, Herrera B and Sánchez A: Editorial special issue TGF-beta/BMP signaling pathway. Cells. 9:23632020. View Article : Google Scholar : PubMed/NCBI | |
Rakian A, Yang WC, Gluhak-Heinrich J, Cui Y, Harris MA, Villarreal D, Feng JQ, Macdougall M and Harris SE: Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium. Int J Oral Sci. 5:75–84. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Muir AM, Ren Y, Massoudi D, Greenspan DS and Feng JQ: Essential roles of bone morphogenetic protein-1 and mammalian tolloid-like 1 in postnatal root dentin formation. J Endod. 43:109–115. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ge G and Greenspan DS: Developmental roles of the BMP1/TLD metalloproteinases. Birth Defects Res C Embryo Today. 78:47–68. 2006. View Article : Google Scholar : PubMed/NCBI | |
Malik Z, Roth DM, Eaton F, Theodor JM and Graf D: Mesenchymal Bmp7 controls onset of tooth mineralization: A novel way to regulate molar cusp shape. Front Physiol. 11:6982020. View Article : Google Scholar : PubMed/NCBI | |
Semba I, Nonaka K, Takahashi I, Takahashi K, Dashner R, Shum L, Nuckolls GH and Slavkin HC: Positionally-dependent chondrogenesis induced by BMP4 is co-regulated by Sox9 and Msx2. Dev Dyn. 217:401–414. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cai C, Wang J, Huo N, Wen L, Xue P and Huang Y: Msx2 plays an important role in BMP6-induced osteogenic differentiation of two mesenchymal cell lines: C3H10T1/2 and C2C12. Regen Ther. 14:245–251. 2020. View Article : Google Scholar : PubMed/NCBI | |
Aïoub M, Lézot F, Molla M, Castaneda B, Robert B, Goubin G, Néfussi JR and Berdal A: Msx2 -/- transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis. Bone. 41:851–859. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hosoya A, Shalehin N, Takebe H, Shimo T and Irie K: Sonic hedgehog signaling and tooth development. Int J Mol Sci. 21:15872020. View Article : Google Scholar : PubMed/NCBI | |
Nakatomi M, Morita I, Eto K and Ota MS: Sonic hedgehog signaling is important in tooth root development. J Dent Res. 85:427–431. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jain P and Rathee M: Anatomy, Head and Neck, Tooth Eruption. StatPearls [Internet]. StatPearls Publishing; Treasure Island, FL: 2024, https://www.ncbi.nlm.nih.gov/books/NBK549878/ | |
Kasugai S, Suzuki S, Shibata S, Yasui S, Amano H and Ogura H: Measurements of the isometric contractile forces generated by dog periodontal ligament fibroblasts in vitro. Arch Oral Biol. 35:597–601. 1990. View Article : Google Scholar : PubMed/NCBI | |
Kalliala E and Taskinen PJ: Cleidocranial dysostosis. Report of six typical cases and one atypical case. Oral Surg Oral Med Oral Pathol. 15:808–822. 1962. View Article : Google Scholar : PubMed/NCBI | |
Shih-Wei Cheng E, Tsuji M, Suzuki S and Moriyama K: An overview of the intraoral features and craniofacial morphology of growing and adult Japanese cleidocranial dysplasia subjects. Eur J Orthod. 44:711–722. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jaruga A, Hordyjewska E, Kandzierski G and Tylzanowski P: Cleidocranial dysplasia and RUNX2-clinical phenotype-genotype correlation. Clin Genet. 90:393–402. 2016. View Article : Google Scholar : PubMed/NCBI | |
Komori T: Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci. 20:16942019. View Article : Google Scholar : PubMed/NCBI | |
Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, Komori T and Nakatsuka M: Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem. 274:6972–6978. 1999. View Article : Google Scholar : PubMed/NCBI | |
Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 89:755–764. 1997. View Article : Google Scholar : PubMed/NCBI | |
Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, et al: Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 89:765–771. 1997. View Article : Google Scholar : PubMed/NCBI | |
Yoda S, Suda N, Kitahara Y, Komori T and Ohyama K: Delayed tooth eruption and suppressed osteoclast number in the eruption pathway of heterozygous Runx2/Cbfa1 knockout mice. Arch Oral Biol. 49:435–442. 2004. View Article : Google Scholar : PubMed/NCBI | |
D'Souza RN, Aberg T, Gaikwad J, Cavender A, Owen M, Karsenty G and Thesleff I: Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development. 126:2911–2920. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bronckers AL, Engelse MA, Cavender A, Gaikwad J and D'Souza RN: Cell-specific patterns of Cbfa1 mRNA and protein expression in postnatal murine dental tissues. Mech Dev. 101:255–258. 2001. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Sun X, Zhang X, Wang X, Zhang C and Zheng S: RUNX2 mutation impairs osteogenic differentiation of dental follicle cells. Arch Oral Biol. 97:156–164. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nadyrshina DD and Khusainova RI: Clinical, genetic aspects and molecular pathogenesis of osteopetrosis. Vavilovskii Zhurnal Genet Selektsii. 27:383–392. 2023.PubMed/NCBI | |
Aker M, Rouvinski A, Hashavia S, Ta-Shma A, Shaag A, Zenvirt S, Israel S, Weintraub M, Taraboulos A, Bar-Shavit Z and Elpeleg O: An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet. 49:221–226. 2012. View Article : Google Scholar : PubMed/NCBI | |
Keng LT and Liang SK: Albers-Schönberg disease. Korean J Intern Med. 34:1167–1168. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luzzi V, Consoli G, Daryanani V, Santoro G, Sfasciotti GL and Polimeni A: Malignant infantile osteopetrosis: Dental effects in paediatric patients. Case reports. Eur J Paediatr Dent. 7:39–44. 2006.PubMed/NCBI | |
Sobacchi C, Schulz A, Coxon FP, Villa A and Helfrich MH: Osteopetrosis: Genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 9:522–536. 2013. View Article : Google Scholar : PubMed/NCBI | |
Polgreen LE, Imel EA and Econs MJ: Autosomal dominant osteopetrosis. Bone. 170:1167232023. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Pan M, Ni J, Zhang Y, Zhang Y, Gao S, Liu J, Wang Z, Zhang R, He H, et al: ClC-7 deficiency impairs tooth development and eruption. Sci Rep. 6:199712016. View Article : Google Scholar : PubMed/NCBI | |
Xue Y, Wang W, Mao T and Duan X: Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia. J Craniomaxillofac Surg. 40:416–420. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wise GE, Lumpkin SJ, Huang H and Zhang Q: Osteoprotegerin and osteoclast differentiation factor in tooth eruption. J Dent Res. 79:1937–1942. 2000. View Article : Google Scholar : PubMed/NCBI | |
Suzuki T, Suda N and Ohyama K: Osteoclastogenesis during mouse tooth germ development is mediated by receptor activator of NFKappa-B ligand (RANKL). J Bone Miner Metab. 22:185–191. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yasuda H: Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab. 39:2–11. 2021. View Article : Google Scholar : PubMed/NCBI | |
Morsczeck C, Moehl C, Götz W, Heredia A, Schäffer TE, Eckstein N, Sippel C and Hoffmann KH: In vitro differentiation of human dental follicle cells with dexamethasone and insulin. Cell Biol Int. 29:567–575. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nagpal R, Goyal RB, Priyadarshini K, Kashyap S, Sharma M, Sinha R and Sharma N: Mucopolysaccharidosis: A broad review. Indian J Ophthalmol. 70:2249–2261. 2022. View Article : Google Scholar : PubMed/NCBI | |
Smith KS, Hallett KB, Hall RK, Wardrop RW and Firth N: Mucopolysaccharidosis: MPS VI and associated delayed tooth eruption. Int J Oral Maxillofac Surg. 24:176–180. 1995. View Article : Google Scholar : PubMed/NCBI | |
Andersson HC: 50 Years ago in the journal of pediatrics: Hurler's disease, Morquio's disease and related mucopolysaccharidoses. J Pediatr. 167:3372015. View Article : Google Scholar : PubMed/NCBI | |
Costa-Motta FM, Bender F, Acosta A, Abé-Sandes K, Machado T, Bomfim T, Boa Sorte T, da Silva D, Bittles A, Giugliani R and Leistner-Segal S: A community-based study of mucopolysaccharidosis type VI in Brazil: The influence of founder effect, endogamy and consanguinity. Hum Hered. 77:189–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vairo F, Federhen A, Baldo G, Riegel M, Burin M, Leistner-Segal S and Giugliani R: Diagnostic and treatment strategies in mucopolysaccharidosis VI. Appl Clin Genet. 8:245–255. 2015.PubMed/NCBI | |
Tomanin R, Karageorgos L, Zanetti A, Al-Sayed M, Bailey M, Miller N, Sakuraba H and Hopwood JJ: Mucopolysaccharidosis type VI (MPS VI) and molecular analysis: Review and classification of published variants in the ARSB gene. Hum Mutat. 39:1788–1802. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alpöz AR, Coker M, Celen E, Ersin NK, Gökçen D, van Diggelenc OP and Huijmansc JG: The oral manifestations of Maroteaux-Lamy syndrome (mucopolysaccharidosis VI): A case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 101:632–637. 2006. View Article : Google Scholar : PubMed/NCBI | |
Simancas Escorcia V, Guillou C, Abbad L, Derrien L, Rodrigues Rezende Costa C, Cannaya V, Benassarou M, Chatziantoniou C, Berdal A, Acevedo AC, et al: Pathogenesis of enamel-renal syndrome associated gingival fibromatosis: A proteomic approach. Front Endocrinol (Lausanne). 12:7525682021. View Article : Google Scholar : PubMed/NCBI | |
Roomaney IA, Kabbashi S and Chetty M: Enamel renal syndrome: Protocol for a scoping review. JMIR Res Protoc. 10:e297022021. View Article : Google Scholar : PubMed/NCBI | |
Crawford PJ, Aldred M and Bloch-Zupan A: Amelogenesis imperfecta. Orphanet J Rare Dis. 2:172007. View Article : Google Scholar : PubMed/NCBI | |
Farias MLM, Ornela GO, de Andrade RS, Martelli DRB, Dias VO and Júnior HM: Enamel renal syndrome: A systematic review. Indian J Nephrol. 31:1–8. 2021. View Article : Google Scholar : PubMed/NCBI | |
Khalifa R, Kammoun R, Mansour L, Ben Alaya T and Ghoul S: Enamel renal syndrome: A case report with calcifications in pulp, gingivae, dental follicle and kidneys. Spec Care Dentist. 44:722–728. 2024. View Article : Google Scholar : PubMed/NCBI | |
de la Dure-Molla M, Quentric M, Yamaguti PM, Acevedo AC, Mighell AJ, Vikkula M, Huckert M, Berdal A and Bloch-Zupan A: Pathognomonic oral profile of enamel renal syndrome (ERS) caused by recessive FAM20A mutations. Orphanet J Rare Dis. 9:842014. View Article : Google Scholar : PubMed/NCBI | |
Wang SK, Aref P, Hu Y, Milkovich RN, Simmer JP, El-Khateeb M, Daggag H, Baqain ZH and Hu JC: FAM20A mutations can cause enamel-renal syndrome (ERS). PLoS Genet. 9:e10033022013. View Article : Google Scholar : PubMed/NCBI | |
Wang SK, Reid BM, Dugan SL, Roggenbuck JA, Read L, Aref P, Taheri AP, Yeganeh MZ, Simmer JP and Hu JC: FAM20A mutations associated with enamel renal syndrome. J Dent Res. 93:42–48. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nitayavardhana I, Theerapanon T, Srichomthong C, Piwluang S, Wichadakul D, Porntaveetus T and Shotelersuk V: Four novel mutations of FAM20A in amelogenesis imperfecta type IG and review of literature for its genotype and phenotype spectra. Mol Genet Genomics. 295:923–931. 2020. View Article : Google Scholar : PubMed/NCBI | |
Normand de la Tranchade I, Bonarek H, Marteau JM, Boileau MJ and Nancy J: Amelogenesis imperfecta and nephrocalcinosis: A new case of this rare syndrome. J Clin Pediatr Dent. 27:171–175. 2003. View Article : Google Scholar : PubMed/NCBI | |
Alhilou A, Beddis HP, Mighell AJ and Durey K: Dentin dysplasia: Diagnostic challenges. BMJ Case Rep. 2018:bcr20172239422018. View Article : Google Scholar : PubMed/NCBI | |
Shields ED, Bixler D and el-Kafrawy AM: A proposed classification for heritable human dentine defects with a description of a new entity. Arch Oral Biol. 18:543–553. 1973. View Article : Google Scholar : PubMed/NCBI | |
Akhil Jose EJ, Palathingal P, Baby D and Thachil JM: Dentin dysplasia type I: A rare case report. J Oral Maxillofac Pathol. 23:3092019. View Article : Google Scholar : PubMed/NCBI | |
Barron MJ, McDonnell ST, Mackie I and Dixon MJ: Hereditary dentine disorders: Dentinogenesis imperfecta and dentine dysplasia. Orphanet J Rare Dis. 3:312008. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Li X, Lu F, Wang Y, Xiong F and Li Q: Dentin dysplasia type I-a dental disease with genetic heterogeneity. Oral Dis. 25:439–446. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kalk WW, Batenburg RH and Vissink A: Dentin dysplasia type I: Five cases within one family. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 86:175–178. 1998. View Article : Google Scholar : PubMed/NCBI | |
Song YL and Bian Z: Recognition on dentin dysplasia type II. Zhonghua Kou Qiang Yi Xue Za Zhi. 58:766–771. 2023.(In Chinese). PubMed/NCBI | |
Yang Q, Chen D, Xiong F, Chen D, Liu C, Liu Y, Yu Q, Xiong J, Liu J, Li K, et al: A splicing mutation in VPS4B causes dentin dysplasia I. J Med Genet. 53:624–633. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bloch-Zupan A, Jamet X, Etard C, Laugel V, Muller J, Geoffroy V, Strauss JP, Pelletier V, Marion V, Poch O, et al: Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet. 89:773–781. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xiong F, Ji Z, Liu Y, Zhang Y, Hu L, Yang Q, Qiu Q, Zhao L, Chen D, Tian Z, et al: Mutation in SSUH2 causes autosomal-dominant dentin dysplasia type I. Hum Mutat. 38:95–104. 2017. View Article : Google Scholar : PubMed/NCBI | |
Handa K, Saito M, Yamauchi M, Kiyono T, Sato S, Teranaka T and Sampath Narayanan A: Cementum matrix formation in vivo by cultured dental follicle cells. Bone. 31:606–611. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Lu F, Chen T, Zhang K, Lu Y, Li X, Wang Y, Liu L, Tian Q, Xiong F and Chen D: VPS4B mutation impairs the osteogenic differentiation of dental follicle cells derived from a patient with dentin dysplasia type I. Int J Oral Sci. 12:222020. View Article : Google Scholar : PubMed/NCBI | |
Zegarelli EV, Kutscher AH, Applebaum E and Archard HO: Odontodysplasia. Oral Surg Oral Med Oral Pathol. 16:187–193. 1963. View Article : Google Scholar : PubMed/NCBI | |
Crawford PJ and Aldred MJ: Regional odontodysplasia: A bibliography. J Oral Pathol Med. 18:251–263. 1989. View Article : Google Scholar : PubMed/NCBI | |
Nijakowski K, Woś P and Surdacka A: Regional odontodysplasia: A systematic review of case reports. Int J Environ Res Public Health. 19:16832022. View Article : Google Scholar : PubMed/NCBI | |
Alotaibi O, Alotaibi G and Alfawaz N: Regional odontodysplasia: An analysis of 161 cases from 1953 to 2017. Saudi Dent J. 31:306–310. 2019. View Article : Google Scholar : PubMed/NCBI | |
Marques AC, Castro WH and do Carmo MA: Regional odontodysplasia: An unusual case with a conservative approach. Br Dent J. 186:522–524. 1999. View Article : Google Scholar : PubMed/NCBI | |
Rushton MA: Odontodysplasia: ‘Ghost teeth’. Br Dent J. 119:109–113. 1965.PubMed/NCBI | |
Carlos R, Contreras-Vidaurre E, Almeida OP, Silva KR, Abrahão PG, Miranda AM and Pires FR: Regional odontodysplasia: morphological, ultrastructural, and immunohistochemical features of the affected teeth, connective tissue, and odontogenic remnants. J Dent Child (Chic). 75:144–150. 2008.PubMed/NCBI | |
Kerebel B, Kerebel LM, Heron D and Le Cabellec MT: Regional odontodysplasia: New histopathological data. J Biol Buccale. 17:121–128. 1989.PubMed/NCBI | |
Kerebel LM and Kerebel B: Soft-tissue calcifications of the dental follicle in regional odontodysplasia: A structural and ultrastructural study. Oral Surg Oral Med Oral Pathol. 56:396–404. 1983. View Article : Google Scholar : PubMed/NCBI | |
Barbería E, Sanz Coarasa A, Hernández A and Cardoso-Silva C: Regional odontodysplasia. A literature review and three case reports. Eur J Paediatr Dent. 13:161–166. 2012.PubMed/NCBI | |
Mathew A, Dauravu LM, Reddy SN, Kumar KR and Venkataramana V: Ghost teeth: Regional odontodysplasia of maxillary first molar associated with eruption disorders in a 10-year-old girl. J Pharm Bioallied Sci. 7 (Suppl 2):S800–S803. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sapp JP and Gardner DG: Regional odontodysplasia: An ultrastructural and histochemical study of the soft-tissue calcifications. Oral Surg Oral Med Oral Pathol. 36:383–392. 1973. View Article : Google Scholar : PubMed/NCBI | |
Gomez RS, Silva EC, Silva-Filho EC and Castro WH: Multiple calcifying hyperplastic dental follicles. J Oral Pathol Med. 27:333–334. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gardner DG and Radden B: Multiple calcifying hyperplastic dental follicles. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 79:603–606. 1995. View Article : Google Scholar : PubMed/NCBI | |
Jamshidi S, Zargaran M and Mohtasham N: Multiple calcifying hyperplastic dental follicle (MCHDF): A case report. J Dent Res Dent Clin Dent Prospects. 7:174–176. 2013.PubMed/NCBI | |
Rodrigues LG, da Silva VB, Carmelo JC, Khouri MS, Mendes PA and Manzi FR: An imaging perspective to multiple calcifying hyperplastic dental follicles-a report of three cases. Ann Maxillofac Surg. 12:227–230. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ulutürk H, Yücel E, Akinci HO, Calisan EB, Yildirim B and Gizli A: Multiple calcifying hyperplastic dental follicles. J Stomatol Oral Maxillofac Surg. 120:77–79. 2019. View Article : Google Scholar : PubMed/NCBI | |
Davari D, Arzhang E and Soltani P: Multiple calcifying hyperplastic dental follicles: A case report. J Oral Maxillofac Surg. 77:757–761. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fukuta Y, Totsuka M, Takeda Y and Yamamoto H: Pathological study of the hyperplastic dental follicle. J Nihon Univ Sch Dent. 33:166–173. 1991. View Article : Google Scholar : PubMed/NCBI | |
Cho YA, Yoon HJ, Hong SP, Lee JI and Hong SD: Multiple calcifying hyperplastic dental follicles: Comparison with hyperplastic dental follicles. J Oral Pathol Med. 40:243–249. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hemeryck L, Hermans F, Chappell J, Kobayashi H, Lambrechts D, Lambrichts I, Bronckaers A and Vankelecom H: Organoids from human tooth showing epithelial stemness phenotype and differentiation potential. Cell Mol Life Sci. 79:1532022. View Article : Google Scholar : PubMed/NCBI | |
Hemeryck L, Lambrichts I, Bronckaers A and Vankelecom H: Establishing organoids from human tooth as a powerful tool toward mechanistic research and regenerative therapy. J Vis Exp. 182:e636712022.PubMed/NCBI |