1
|
Lamas-Paz A, Hao F, Nelson LJ, Vázquez MT,
Canals S, Del Moral MG, Martínez-Naves E, Nevzorova YA and Cubero
FJ: Alcoholic liver disease: Utility of animal models. World J
Gastroenterol. 24:5063–5075. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sommerfeld-Klatta K, Łukasik-Głębocka M
and Zielińska-Psuja B: Oxidative stress and biochemical indicators
in blood of patients addicted to alcohol treated for acute ethylene
glycol poisoning. Hum Exp Toxicol. 41:96032712110615022022.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Louvet A and Mathurin P: Alcoholic liver
disease: Mechanisms of injury and targeted treatment. Nat Rev
Gastroenterol Hepatol. 12:231–242. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ishida K, Kaji K, Sato S, Ogawa H, Takagi
H, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T and
Yoshiji H: Sulforaphane ameliorates ethanol plus carbon
tetrachloride-induced liver fibrosis in mice through the
Nrf2-mediated antioxidant response and acetaldehyde metabolization
with inhibition of the LPS/TLR4 signaling pathway. J Nutr Biochem.
89:1085732021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kaur K, Narang RK and Singh S: Role of
Nrf2 in oxidative stress, neuroinflammation and autophagy in
Alzheimer's disease: Regulation of Nrf2 by different signaling
pathways. Curr Mol Med. 26:10.2174/156652402366623072614544.
2023.PubMed/NCBI
|
6
|
Herzig S and Shaw RJ: AMPK: Guardian of
metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol.
19:121–135. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Lan T, Geng XJ, Zhang SJ, Zeng XX, Ying
JJ, Xu Y, Liu SY, Li P, Tong YH, Wang W, et al: Si-Ni-San inhibits
hepatic Fasn expression and lipid accumulation in MAFLD mice
through AMPK/p300/SREBP-1c axis. Phytomedicine. 123:1552092024.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Attal N, Marrero E, Thompson KJ and
McKillop IH: Role of AMPK-SREBP signaling in regulating fatty acid
binding-4 (FABP4) expression following ethanol metabolism. Biology
(Basel). 11:16132022.PubMed/NCBI
|
9
|
Kong LZ, Chandimali N, Han YH, Lee DH, Kim
JS, Kim SU, Kim TD, Jeong DK, Sun HN, Lee DS and Kwon T:
Pathogenesis, early diagnosis, and therapeutic management of
alcoholic liver disease. Int J Mol Sci. 20:27122019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen Y, Liu ZJ, Liu J, Liu LK, Zhang ES
and Li WL: Inhibition of metastasis and invasion of ovarian cancer
cells by crude polysaccharides from rosa roxburghii tratt in vitro.
Asian Pac J Cancer Prev. 15:10351–10354. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang LT, Lv MJ, An JY, Fan XH, Dong MZ,
Zhang SD, WangJ D, Wang YQ, Cai ZH and Fu YJ: Botanical
characteristics, phytochemistry and related biological activities
of Rosa roxburghii Tratt fruit, and its potential use in functional
foods: A review. Food Funct. 12:1432–1451. 2021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yan P, Liu J, Huang Y, Li Y, Yu J, Xia J,
Liu M, Bai R, Wang N, Guo L, et al: Lotus leaf extract can
attenuate salpingitis in laying hens by inhibiting apoptosis. Poult
Sci. 102:1028652023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen L, Hao L, Yanshuo C, FangFang W,
Daqin C, Weidong X, Jian X, Shaodong C, Hongyu Z and Ke X: Grape
seed proanthocyanidins regulate mitophagy of endothelial cells and
promote wound healing in mice through p-JNK/FOXO3a/ROS signal
pathway. Arch Biochem Biophys. 749:1097902023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zapaśnik A, Sokołowska B and Bryła M: Role
of lactic acid bacteria in food preservation and safety. Foods
(Basel). 11:12832022.
|
15
|
Chen C, Lu Y, Yu H, Chen Z and Tian H:
Influence of 4 lactic acid bacteria on the flavor profile of
fermented apple juice. Food Biosci. 27:30–36. 2019. View Article : Google Scholar
|
16
|
Wei M, Feng D, Zhang Y, Zuo Y, Li J, Wang
L and Hu P: Effect and correlation of rosa roxburghii tratt juice
fermented by lactobacillus paracasei SR10-1 on oxidative stress and
gut microflora dysbiosis in streptozotocin (STZ)-induced type 2
diabetes mellitus mice. Foods (Basel). 12:32332023.
|
17
|
Wang X, Guo R, Yu Z, Zikela L, Li J, Li S
and Han Q: Torreya grandis Kernel oil alleviates loperamide-induced
slow transit constipation via up-regulating the colonic expressions
of Occludin/Claudin-1/ZO-1 and 5-HT3R/5-HT4R in BALB/c mice. Mol
Nutr Food Res. 68:e23006152024. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen Z, Tian R, She Z, Cai J and Li H:
Role of oxidative stress in the pathogenesis of nonalcoholic fatty
liver disease. Free Radic Biol Med. 152:116–141. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ren Z, Wang X, Xu M, Yang F, Frank JA, Ke
ZJ and Luo J: Binge ethanol exposure causes endoplasmic reticulum
stress, oxidative stress and tissue injury in the pancreas.
Oncotarget. 7:54303–54316. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Damjanovska S, Karb DB and Cohen SM:
Delivering health care education and information about excessive
alcohol consumption and risks of alcohol-associated liver disease.
Clin Liver Dis (Hoboken). 22:184–187. 2023. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang F, Li Y, Zhang YJ, Zhou Y, Li S and
Li HB: Natural products for the prevention and treatment of
hangover and alcohol use disorder. Molecules (Basel). 21:642016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Yan J, Nie Y, Luo M, Chen Z and He B:
Natural compounds: A potential treatment for alcoholic liver
disease? Front Pharmacol. 12:6944752021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang S, Huang XY, Zhou N, Wu Q, Liu J and
Shi JS: RNA-Seq analysis of protection against chronic alcohol
liver injury by rosa roxburghii fruit juice (Cili) in mice.
Nutrients. 14:19742022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sefried S, Häring HU, Weigert C and
Eckstein SS: Suitability of hepatocyte cell lines HepG2, AML12 and
THLE-2 for investigation of insulin signalling and hepatokine gene
expression. Open Biol. 8:1801472018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Reyes RC, Brennan AM, Shen Y, Baldwin Y
and Swanson RA: Activation of neuronal NMDA receptors induces
superoxide-mediated oxidative stress in neighboring neurons and
astrocytes. J Neurosci. 32:12973–12978. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tsikas D: Assessment of lipid peroxidation
by measuring malondialdehyde (MDA) and relatives in biological
samples: Analytical and biological challenges. Anal Biochem.
524:13–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li
Y and Peng Z: ROS-induced lipid peroxidation modulates cell death
outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis.
Arch Toxicol. 97:1439–1451. 2023. View Article : Google Scholar : PubMed/NCBI
|
28
|
Svegliati-Baroni G, Pierantonelli I,
Torquato P, Marinelli R, Ferreri C, Chatgilialoglu C, Bartolini D
and Galli F: Lipidomic biomarkers and mechanisms of lipotoxicity in
non-alcoholic fatty liver disease. Free Radic Biol Med.
144:293–309. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Minelli A, Conte C, Grottelli S, Bellezza
I, Cacciatore I and Bolaños JP: Cyclo (His-Pro) promotes
cytoprotection by activating Nrf2-mediated up-regulation of
antioxidant defence. J Cell Mol Med. 13:1149–1161. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bellezza I, Giambanco I, Minelli A and
Donato R: Nrf2-KEAP1 signaling in oxidative and reductive stress.
Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rahim I, Sayed RK, Fernández-Ortiz M,
Aranda-Martínez P, Guerra-Librero A, Fernández-Martínez J, Rusanova
I, Escames G, Djerdjouri B and Acuña-Castroviejo D: Melatonin
alleviates sepsis-induced heart injury through activating the Nrf2
pathway and inhibiting the NLRP3 inflammasome. Naunyn Schmiedebergs
Arch Pharmacol. 394:261–277. 2021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Higgins LG, Kelleher MO, Eggleston IM,
Itoh K, Yamamoto M and Hayes JD: Transcription factor Nrf2 mediates
an adaptive response to sulforaphane that protects fibroblasts in
vitro against the cytotoxic effects of electrophiles, peroxides and
redox-cycling agents. Toxicol Appl Pharmacol. 237:267–280. 2009.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Ryter SW: Heme oxgenase-1, a cardinal
modulator of regulated cell death and inflammation. Cells.
10:5152021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Guan D, Zhou W, Wei H, Wang T, Zheng K,
Yang C, Feng R, Xu R, Fu Y, Li C, et al: Ferritinophagy-mediated
ferroptosis and activation of KEAP1/Nrf2/HO-1 pathway were
conducive to EMT inhibition of gastric cancer cells in action of
2,2′-Di-pyridineketone hydrazone dithiocarbamate butyric acid
ester. Oxid Med Cell Longev. 21:39206642022.PubMed/NCBI
|
35
|
Dong H, Hao L, Zhang W, Zhong W, Guo W,
Yue R, Sun X and Zhou Z: Activation of AhR-NQO1 signaling pathway
protects against alcohol-induced liver injury by improving redox
balance. Cell Mol Gastroenterol Hepatol. 12:793–811. 2021.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu W, Wang B, Wang T, Liu X, He X, Liu Y,
Li Z and Zeng H: Ursodeoxycholic acid attenuates acute aortic
dissection formation in angiotensin II-infused apolipoprotein
E-deficient mice associated with reduced ROS and increased Nrf2
levels. Cell Physiol Biochem. 38:1391–1405. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yap F, Craddock L and Yang J: Mechanism of
AMPK suppression of LXR-dependent Srebp-1c transcription. Int J
Biol Sci. 7:645–650. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ha JH, Jang J, Chung SI and Yoon Y: AMPK
and SREBP-1c mediate the anti-adipogenic effect of
β-hydroxyisovalerylshikonin. Int J Mol Med. 37:816–824. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Tracz-Gaszewska Z and Dobrzyn P:
Stearoyl-CoA Desaturase 1 as a therapeutic target for the treatment
of cancer. Cancers (Basel). 11:9482019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Day EA, Ford RJ and Steinberg GR: AMPK as
a therapeutic target for treating metabolic diseases. Trends
Endocrinol Metab. 28:545–560. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Robinson AJ, Darley RL and Tonks A:
Reactive oxygen species in leukemias: Maintaining cancer cell
proliferation via redox signaling and changing metabolic
homeostasis. Oncotarget. 12:952–954. 2021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang X, Chen X, Zhou W, Men H, Bao T, Sun
Y, Wang Q, Tan Y, Keller BB, Tong Q, et al: Ferroptosis is
essential for diabetic cardiomyopathy and is prevented by
sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 12:708–722.
2022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Park Y, Sung J, Yang J, Ham H, Kim Y,
Jeong HS and Lee J: Inhibitory effect of esculetin on
free-fatty-acid-induced lipid accumulation in human HepG2 cells
through activation of AMP-activated protein kinase. Food Sci
Biotechnol. 26:263–269. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lu Q, Yang L, Xiao JJ, Liu Q, Ni L, Hu JW,
Yu H, Wu X and Zhang BF: Empagliflozin attenuates the renal tubular
ferroptosis in diabetic kidney disease through AMPK/NRF2 pathway.
Free Radic Biol Med. 195:89–102. 2023. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zimmermann K, Baldinger J, Mayerhofer B,
Atanasov AG, Dirsch VM and Heiss EH: Activated AMPK boosts the
Nrf2/HO-1 signaling axis-A role for the unfolded protein response.
Free Radic Biol Med. 88:417–426. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Petsouki E, Cabrera SNS and Heiss EH: AMPK
and NRF2: Interactive players in the same team for cellular
homeostasis? Free Radic Biol Med. 190:75–93. 2022. View Article : Google Scholar : PubMed/NCBI
|