Chitinase‑3 like‑protein‑1: A potential predictor of cardiovascular disease (Review)
- Authors:
- Zhuojian Qu
- Yirui Lu
- Yutong Ran
- Donghua Xu
- Zhiliang Guo
- Min Cheng
-
Affiliations: School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China, Central Laboratory of The First Affiliated Hospital, Shandong Second Medical University, Weifang, Shandong 261000, P.R. China, Department of Spine Surgery, The 80th Group Army Hospital of Chinese PLA, Weifang, Shandong 261021, P.R. China - Published online on: August 6, 2024 https://doi.org/10.3892/mmr.2024.13300
- Article Number: 176
-
Copyright: © Qu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Al-Mallah MH, Sakr S and Al-Qunaibet A: Cardiorespiratory fitness and cardiovascular disease prevention: An update. Curr Atheroscler Rep. 20:12018. View Article : Google Scholar : PubMed/NCBI | |
Mensah GA, Fuster V and Roth GA: A Heart-Healthy and Stroke-Free world: Using data to inform global action. J Am Coll Cardiol. 82:2343–2349. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dhande IS and Doris PA: Genomics and inflammation in cardiovascular disease. Compr Physiol. 11:2433–2454. 2021. View Article : Google Scholar : PubMed/NCBI | |
Weber BN, Giles JT and Liao KP: Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. Nat Rev Rheumatol. 19:417–428. 2023. View Article : Google Scholar : PubMed/NCBI | |
Forteza MJ, Berg M, Edsfeldt A, Sun J, Baumgartner R, Kareinen I, Casagrande FB, Hedin U, Zhang S, Vuckovic I, et al: Pyruvate dehydrogenase kinase regulates vascular inflammation in atherosclerosis and increases cardiovascular risk. Cardiovasc Res. 119:1524–1536. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S and Liu C: Macrophages in cardiovascular diseases: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 9:1302024. View Article : Google Scholar : PubMed/NCBI | |
Wagenhauser MU, Mulorz J, Krott KJ, Bosbach A, Feige T, Rhee YH, Chatterjee M, Petzold N, Böddeker C, Ibing W, et al: Crosstalk of platelets with macrophages and fibroblasts aggravates inflammation, aortic wall stiffening, and osteopontin release in abdominal aortic aneurysm. Cardiovasc Res. 120:417–432. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kinoshita D, Suzuki K, Yuki H, Niida T, Fujimoto D, Minami Y, Dey D, Lee H, McNulty I, Ako J, et al: Sex-Specific association between perivascular inflammation and plaque vulnerability. Circ Cardiovasc Imaging. 17:e0161782024. View Article : Google Scholar : PubMed/NCBI | |
Ham HJ, Lee YS, Koo JK, Yun J, Son DJ, Han SB and Hong JT: Inhibition of Amyloid-β (Aβ)-Induced cognitive impairment and neuroinflammation in CHI3L1 knockout mice through downregulation of ERK-PTX3 pathway. Int J Mol Sci. 25:55502024. View Article : Google Scholar : PubMed/NCBI | |
Kui L, Kim AD, Onyuru J, Hoffman HM and Feldstein AE: BRP39 regulates neutrophil recruitment in NLRP3 Inflammasome-Induced liver inflammation. Cell Mol Gastroenterol Hepatol. 17:481–497. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ferrigno I, Verzellesi L, Ottone M, Bonacini M, Rossi A, Besutti G, Bonelli E, Colla R, Facciolongo N, Teopompi E, et al: CCL18, CHI3L1, ANG2, IL-6 systemic levels are associated with the extent of lung damage and radiomic features in SARS-CoV-2 infection. Inflamm Res. 73:515–530. 2024. View Article : Google Scholar : PubMed/NCBI | |
Song M, Zhang G, Shi H, Zhu E, Deng L and Shen H: Serum YKL-40 in coronary heart disease: Linkage with inflammatory cytokines, artery stenosis, and optimal cut-off value for estimating major adverse cardiovascular events. Front Cardiovasc Med. 10:12423392023. View Article : Google Scholar : PubMed/NCBI | |
Reilly CS, Borges AH, Baker JV, Safo SE, Sharma S, Polizzotto MN, Pankow JS, Hu X, Sherman BT, Babiker AG, et al: Investigation of causal effects of protein biomarkers on cardiovascular disease in persons with HIV. J Infect Dis. 227:951–960. 2023. View Article : Google Scholar : PubMed/NCBI | |
Czestkowski W, Krzeminski L, Piotrowicz MC, Mazur M, Pluta E, Andryianau G, Koralewski R, Matyszewski K, Olejniczak S, Kowalski M, et al: Structure-Based discovery of High-Affinity small molecule ligands and development of tool probes to study the role of Chitinase-3-Like protein 1. J Med Chem. 67:3959–3985. 2024. View Article : Google Scholar : PubMed/NCBI | |
Junker N, Johansen JS, Hansen LT, Lund EL and Kristjansen PE: Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells. Cancer Sci. 96:183–190. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Su Z, Li Y, Zhang X and You Q: Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct Target Ther. 5:2012020. View Article : Google Scholar : PubMed/NCBI | |
Fusetti F, Pijning T, Kalk KH, Bos E and Dijkstra BW: Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J Biol Chem. 278:37753–37760. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Huang M and Jiang L: Potential roles and future perspectives of Chitinase 3-like 1 in macrophage polarization and the development of diseases. Int J Mol Sci. 24:161492023. View Article : Google Scholar : PubMed/NCBI | |
Coffman FD: Chitinase 3-Like-1 (CHI3L1): A putative disease marker at the interface of proteomics and glycomics. Crit Rev Clin Lab Sci. 45:531–562. 2008. View Article : Google Scholar : PubMed/NCBI | |
Suzuki K, Okawa K, Ohkura M, Kanaizumi T, Kobayashi T, Takahashi K, Takei H, Otsuka M, Tabata E, Bauer PO and Oyama F: Evolutionary insights into sequence modifications governing chitin recognition and chitinase inactivity in YKL-40 (HC-gp39, CHI3L1). J Biol Chem. 300:1073652024. View Article : Google Scholar : PubMed/NCBI | |
Yu JE, Yeo IJ, Han SB, Yun J, Kim B, Yong YJ, Lim YS, Kim TH, Son DJ and Hong JT: Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer. Exp Mol Med. 56:1–18. 2024. View Article : Google Scholar : PubMed/NCBI | |
Laucyte-Cibulskiene A, Ward LJ, Ebert T, Tosti G, Tucci C, Hernandez L, Kautzky-Willer A, Herrero MT, Norris CM, Pilote L, et al: Role of GDF-15, YKL-40 and MMP 9 in patients with end-stage kidney disease: Focus on sex-specific associations with vascular outcomes and all-cause mortality. Biol Sex Differ. 12:502021. View Article : Google Scholar : PubMed/NCBI | |
Kwak EJ, Hong JY, Kim MN, Kim SY, Kim SH, Park CO, Kim KW, Lee CG, Elias JA, Jee HM and Sohn MH: Chitinase 3-like 1 drives allergic skin inflammation via Th2 immunity and M2 macrophage activation. Clin Exp Allergy. 49:1464–1474. 2019. View Article : Google Scholar : PubMed/NCBI | |
Libreros S, Garcia-Areas R, Shibata Y, Carrio R, Torroella-Kouri M and Iragavarapu-Charyulu V: Induction of proinflammatory mediators by CHI3L1 is reduced by chitin treatment: Decreased tumor metastasis in a breast cancer model. Int J Cancer. 131:377–386. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, Kang MJ, He CH, Takyar S and Elias JA: Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 73:479–501. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ling H and Recklies AD: The chitinase 3-like protein human cartilage glycoprotein 39 inhibits cellular responses to the inflammatory cytokines interleukin-1 and tumour necrosis factor-alpha. Biochem J. 380:651–659. 2004. View Article : Google Scholar : PubMed/NCBI | |
Recklies AD, Ling H, White C and Bernier SM: Inflammatory cytokines induce production of CHI3L1 by articular chondrocytes. J Biol Chem. 280:41213–41221. 2005. View Article : Google Scholar : PubMed/NCBI | |
Connolly K, Lehoux M, O'Rourke R, Assetta B, Erdemir GA, Elias JA, Lee CG and Huang YA: Potential role of chitinase-3-like protein 1 (CHI3L1/YKL-40) in neurodegeneration and Alzheimer's disease. Alzheimers Dement. 19:9–24. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cicognola C, Mattsson-Carlgren N, van Westen D, Zetterberg H, Blennow K, Palmqvist S, Ahmadi K, Strandberg O, Stomrud E, Janelidze S and Hansson O: Associations of CSF PDGFRβ with aging, Blood-Brain barrier damage, neuroinflammation, and Alzheimer disease pathologic changes. Neurology. 101:e30–e39. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Onen CL, Lisheng L, et al: Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: A case-control study. Lancet. 366:1640–1649. 2005. View Article : Google Scholar : PubMed/NCBI | |
Laing SP, Swerdlow AJ, Slater SD, Burden AC, Morris A, Waugh NR, Gatling W, Bingley PJ and Patterson CC: Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia. 46:760–765. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kwon Y, Kim JH, Ha EK, Jee HM, Baek HS, Han MY and Jeong SJ: Serum YKL-40 levels are associated with the atherogenic index of plasma in children. Mediators Inflamm. 2020:87139082020. View Article : Google Scholar : PubMed/NCBI | |
Kyrgios I, Galli-Tsinopoulou A, Stylianou C, Papakonstantinou E, Arvanitidou M and Haidich AB: Elevated circulating levels of the serum acute-phase protein YKL-40 (chitinase 3-like protein 1) are a marker of obesity and insulin resistance in prepubertal children. Metabolism. 61:562–568. 2012. View Article : Google Scholar : PubMed/NCBI | |
Catalan V, Gomez-Ambrosi J, Rodriguez A, Ramírez B, Rotellar F, Valentí V, Silva C, Gil MJ, Salvador J and Frühbeck G: Increased circulating and visceral adipose tissue expression levels of YKL-40 in obesity-associated type 2 diabetes are related to inflammation: Impact of conventional weight loss and gastric bypass. J Clin Endocrinol Metab. 96:200–209. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nielsen AR, Erikstrup C, Johansen JS, Fischer CP, Plomgaard P, Krogh-Madsen R, Taudorf S, Lindegaard B and Pedersen BK: Plasma YKL-40: A BMI-independent marker of type 2 diabetes. Diabetes. 57:3078–3082. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim HM, Lee BW, Song YM, Kim WJ, Chang HJ, Choi DH, Yu HT, Kang E, Cha BS and Lee HC: Potential association between coronary artery disease and the inflammatory biomarker YKL-40 in asymptomatic patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 11:842012. View Article : Google Scholar : PubMed/NCBI | |
Fisman EZ and Tenenbaum A: Adiponectin: A manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol. 13:1032014. View Article : Google Scholar : PubMed/NCBI | |
Aguilera E, Serra-Planas E, Granada ML, Pellitero S, Reverter JL, Alonso N, Soldevila B, Mauricio D and Puig-Domingo M: Relationship of YKL-40 and adiponectin and subclinical atherosclerosis in asymptomatic patients with type 1 diabetes mellitus from a European Mediterranean population. Cardiovasc Diabetol. 14:1212015. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Li G, Chang D and Su X: YKL-40 as a novel biomarker in cardio-metabolic disorders and inflammatory diseases. Clin Chim Acta. 511:40–46. 2020. View Article : Google Scholar : PubMed/NCBI | |
Perumalsamy S, Huri HZ, Abdullah BM, Mazlan O, Wan Ahmad WA and Vethakkan S: Genetic markers of insulin resistance and atherosclerosis in type 2 diabetes mellitus patients with coronary artery disease. Metabolites. 13:4272023. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Madrid F and Sessa WC: Spotlight on mechanisms of vascular inflammation. Cardiovasc Res. 86:171–173. 2010. View Article : Google Scholar : PubMed/NCBI | |
Haaversen AB, Brekke LK, Bakland G, Rodevand E, Myklebust G and Diamantopoulos AP: Norwegian society of rheumatology recommendations on diagnosis and treatment of patients with giant cell arteritis. Front Med (Lausanne). 9:10826042022. View Article : Google Scholar : PubMed/NCBI | |
Graver JC, Jiemy WF, Altulea DHA, van Sleen Y, Xu S, van der Geest KSM, Verstappen GMPJ, Heeringa P, Abdulahad WH, Brouwer E, et al: Cytokine producing B-cells and their capability to polarize macrophages in giant cell arteritis. J Autoimmun. 140:1031112023. View Article : Google Scholar : PubMed/NCBI | |
van Sleen Y, Jiemy WF, Pringle S, van der Geest KSM, Abdulahad WH, Sandovici M, Brouwer E, Heeringa P and Boots AMH: A distinct macrophage subset mediating tissue destruction and neovascularization in giant cell arteritis: Implication of the YKL-40/Interleukin-13 receptor α 2 axis. Arthritis Rheumatol. 73:2327–2337. 2021. View Article : Google Scholar : PubMed/NCBI | |
Haque K and Bhargava P: Abdominal aortic aneurysm. Am Fam Physician. 106:165–172. 2022.PubMed/NCBI | |
Maegdefessel L, Spin JM, Raaz U, Eken SM, Toh R, Azuma J, Adam M, Nakagami F, Heymann HM, Chernogubova E, et al: miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat Commun. 5:52142014. View Article : Google Scholar : PubMed/NCBI | |
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ and Han M: Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 7:1312022. View Article : Google Scholar : PubMed/NCBI | |
Liang G, Wang S, Shao J, Jin YJ, Xu L, Yan Y, Günther S, Wang L and Offermanns S: Tenascin-X Mediates Flow-Induced suppression of EndMT and atherosclerosis. Circ Res. 130:1647–1659. 2022. View Article : Google Scholar : PubMed/NCBI | |
Michelsen AE, Rathcke CN, Skjelland M, Holm S, Ranheim T, Krohg-Sørensen K, Klingvall MF, Brosstad F, Oie E, Vestergaard H, et al: Increased YKL-40 expression in patients with carotid atherosclerosis. Atherosclerosis. 211:589–595. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sciborski K, Kuliczkowski W, Karolko B, Bednarczyk D, Protasiewicz M, Mysiak A and Negrusz-Kawecka M: Plasma YKL-40 levels correlate with the severity of coronary atherosclerosis assessed with the SYNTAX score. Pol Arch Intern Med. 128:644–648. 2018.PubMed/NCBI | |
Xu Q, Sun L, Wang Y, Wang R, Jia Y, Guo D, Shi M, Yang P, Zhang Y and Zhu Z: Causal effects of YKL-40 on ischemic stroke and its subtypes: A 2-Sample mendelian randomization study. J Am Heart Assoc. 12:e0290002023. View Article : Google Scholar : PubMed/NCBI | |
Kjaergaard AD, Bojesen SE, Johansen JS and Nordestgaard BG: Elevated plasma YKL-40 levels and ischemic stroke in the general population. Ann Neurol. 68:672–680. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma WH, Wang XL, Du YM, Wang YB, Zhang Y, Wei DE, Guo LL and Bu PL: Association between human cartilage glycoprotein 39 (YKL-40) and arterial stiffness in essential hypertension. BMC Cardiovasc Disord. 12:352012. View Article : Google Scholar : PubMed/NCBI | |
Schroder J, Jakobsen JC, Winkel P, Hilden J, Jensen GB, Sajadieh A, Larsson A, Ärnlöv J, Harutyunyan M, Johansen JS, et al: Prognosis and reclassification by YKL-40 in stable coronary artery disease. J Am Heart Assoc. 9:e0146342020. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Hsu LA, Cheng ST, Teng MS, Yeh CH, Sun YC, Huang HL and Ko YL: Circulating YKL-40 level, but not CHI3L1 gene variants, is associated with atherosclerosis-related quantitative traits and the risk of peripheral artery disease. Int J Mol Sci. 15:22421–22437. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wallentin L, Eriksson N, Olszowka M, Grammer TB, Hagström E, Held C, Kleber ME, Koenig W, März W, Stewart RAH, et al: Plasma proteins associated with cardiovascular death in patients with chronic coronary heart disease: A retrospective study. PLoS Med. 18:e10035132021. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Zhong C, Wang A, Guo Z, Bu X, Zhou Y, Tian Y, HuangFu X, Zhu Z and Zhang Y: YKL-40 is a novel biomarker for predicting hypertension incidence among prehypertensive subjects: A population-based nested case-control study in China. Clin Chim Acta. 472:146–150. 2017. View Article : Google Scholar : PubMed/NCBI | |
Çetin M, Erdoğan T, Kırış T, Özer S, Çinier G, Emlek N, Durak H and Şatıroğlu Ö: Elevated serum YKL40 level is a predictor of MACE during the long-term follow up in hypertensive patients. Clin Exp Hypertens. 42:271–274. 2020. View Article : Google Scholar : PubMed/NCBI | |
Arain F, Abraityte A, Bogdanova M, Solberg OG, Michelsen AE, Lekva T, Aakhus S, Holm S, Halvorsen B, Finsen AV, et al: YKL-40 (Chitinase-3-Like protein 1) serum levels in aortic stenosis. Circ Heart Fail. 13:e0066432020. View Article : Google Scholar : PubMed/NCBI | |
Hobaus C, Tscharre M, Herz CT, Pesau G, Wrba T, Koppensteiner R and Schernthaner GH: YKL-40 levels increase with declining ankle-brachial index and are associated with long-term cardiovascular mortality in peripheral arterial disease patients. Atherosclerosis. 274:152–156. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen XL, Li Q, Huang WS, Lin YS, Xue J, Wang B, Jin KL and Shao B: Serum YKL-40, a prognostic marker in patients with large-artery atherosclerotic stroke. Acta Neurol Scand. 136:97–102. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Shen H, Min J, Gao Y, Liu K, Xi W, Yang J, Yin L, Xu J, Xiao J and Wang Z: YKL-40 is highly expressed in the epicardial adipose tissue of patients with atrial fibrillation and associated with atrial fibrosis. J Transl Med. 16:2292018. View Article : Google Scholar : PubMed/NCBI | |
Michelakakis N, Neroutsos GJ, Perpinia AS, Farmakis D, Voukouti EG, Karavidas AJ, Parissis J, Georgiakaki MT and Pyrgakis VN: Chitinase-3-like protein-1 (YKL-40) before and after therapy in supraventricular arrhythmias. J Cardiovasc Med (Hagerstown). 18:650–654. 2017. View Article : Google Scholar : PubMed/NCBI | |
Krečak I, Gverić-Krečak V, Lapić I, Rončević P, Gulin J, Fumić K, Krečak F, Holik H and Duraković N: Circulating YKL-40 in Philadelphia-negative myeloproliferative neoplasms. Acta Clin Belg. 76:32–39. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xing Y, Guo J, Gai L, Liu B and Luo D: Serum YKL-40 is associated with the severity of coronary artery disease and hypertension. Asian J Surg. 43:1121–1122. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song CL, Bin L, Diao HY, Wang JH, Shi YF, Lu Y, Wang G, Guo ZY, Li YX, Liu JG, et al: Diagnostic value of serum YKL-40 level for coronary artery disease: A Meta-Analysis. J Clin Lab Anal. 30:23–31. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng JL, Lu L, Hu J, Zhang RY, Zhang Q, Chen QJ and Shen WF: Increased serum YKL-40 and C-reactive protein levels are associated with angiographic lesion progression in patients with coronary artery disease. Atherosclerosis. 210:590–595. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Nakajima E, Norbrun C, Sorkhdini P, Yang AX, Yang D, Ventetuolo CE, Braza J, Vang A, Aliotta J, et al: Chitinase 3 like 1 contributes to the development of pulmonary vascular remodeling in pulmonary hypertension. JCI Insight. 7:e1595782022. View Article : Google Scholar : PubMed/NCBI | |
Jung YY, Kim KC, Park MH, Seo Y, Park H, Park MH, Chang J, Hwang DY, Han SB, Kim S, et al: Atherosclerosis is exacerbated by chitinase-3-like-1 in amyloid precursor protein transgenic mice. Theranostics. 8:749–766. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rehli M, Niller HH, Ammon C, Langmann S, Schwarzfischer L, Andreesen R and Krause SW: Transcriptional regulation of CHI3L1, a marker gene for late stages of macrophage differentiation. J Biol Chem. 278:44058–44067. 2003. View Article : Google Scholar : PubMed/NCBI | |
Thomas C, Mandilaras G, Rabenhorst D, Oberhoffer FS, Fischer M, Haas NA and Fernandez Rodriguez S: Vagal asystoles in a boy with Prader-Willi syndrome. Pediatrics. 152:e20220582162023. View Article : Google Scholar : PubMed/NCBI | |
Hope S, Naerland T, Olav Kolset S, Ueland T, Andreassen OA and Nordstrom M: Systemic immune profile in Prader-Willi syndrome: Elevated matrix metalloproteinase and myeloperoxidase and reduced macrophage inhibitory factor. Orphanet J Rare Dis. 18:1852023. View Article : Google Scholar : PubMed/NCBI | |
Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L and Lewis EF: Atherosclerosis. Nat Rev Dis Primers. 5:562019. View Article : Google Scholar : PubMed/NCBI | |
Boot RG, van Achterberg TA, van Aken BE, Renkema GH, Jacobs MJ, Aerts JM and de Vries CJ: Strong induction of members of the chitinase family of proteins in atherosclerosis: Chitotriosidase and human cartilage gp-39 expressed in lesion macrophages. Arterioscler Thromb Vasc Biol. 19:687–694. 1999. View Article : Google Scholar : PubMed/NCBI | |
Gong Z, Xing S, Zheng F and Xing Q: Increased expression of chitinase 3-like 1 in aorta of patients with atherosclerosis and suppression of atherosclerosis in apolipoprotein E-knockout mice by chitinase 3-like 1 gene silencing. Mediators Inflamm. 2014:9054632014. View Article : Google Scholar : PubMed/NCBI | |
Huan W, Yandong L, Chao W, Sili Z, Jun B, Mingfang L, Yu C and Lefeng Q: YKL-40 aggravates early-stage atherosclerosis by inhibiting macrophage apoptosis in an Aven-dependent Way. Front Cell Dev Biol. 9:7527732021. View Article : Google Scholar : PubMed/NCBI | |
de Lemos JA, Morrow DA, Sabatine MS, Murphy SA, Gibson CM, Antman EM, McCabe CH, Cannon CP and Braunwald E: Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation. 107:690–695. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ahangari F, Sood A, Ma B, Takyar S, Schuyler M, Qualls C, Dela Cruz CS, Chupp GL, Lee CG and Elias JA: Chitinase 3-like-1 regulates both visceral fat accumulation and asthma-like Th2 inflammation. Am J Respir Crit Care Med. 191:746–757. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hempen M, Kopp HP, Elhenicky M, Höbaus C, Brix JM, Koppensteiner R, Schernthaner G and Schernthaner GH: YKL-40 is elevated in morbidly obese patients and declines after weight loss. Obes Surg. 19:1557–1563. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kopp HP, Kopp CW, Festa A, Krzyzanowska K, Kriwanek S, Minar E, Roka R and Schernthaner G: Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc Biol. 23:1042–1047. 2003. View Article : Google Scholar : PubMed/NCBI | |
Malinda KM, Ponce L, Kleinman HK, Shackelton LM and Millis AJ: Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells. Exp Cell Res. 250:168–173. 1999. View Article : Google Scholar : PubMed/NCBI | |
Jung TW, Park HS, Choi GH, Kim D, Jeong JH and Lee T: Chitinase-3-like protein 1 ameliorates atherosclerotic responses via PPARdelta-mediated suppression of inflammation and ER stress. J Cell Biochem. 119:6795–6805. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Zhou W, Cao C, Zhang W, Liu G and Zhang J: Amelioration of atherosclerosis in apolipoprotein E-deficient mice by combined RNA interference of lipoprotein-associated phospholipase A2 and YKL-40. PLoS One. 13:e02027972018. View Article : Google Scholar : PubMed/NCBI | |
Ngernyuang N, Yan W, Schwartz LM, Oh D, Liu YB, Chen H and Shao R: A heparin binding motif rich in arginine and lysine is the functional domain of YKL-40. Neoplasia. 20:182–192. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shao R, Hamel K, Petersen L, Cao QJ, Arenas RB, Bigelow C, Bentley B and Yan W: YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene. 28:4456–4468. 2009. View Article : Google Scholar : PubMed/NCBI | |
Francescone R, Ngernyuang N, Yan W, Bentley B and Shao R: Tumor-derived mural-like cells coordinate with endothelial cells: Role of YKL-40 in mural cell-mediated angiogenesis. Oncogene. 33:2110–2122. 2014. View Article : Google Scholar : PubMed/NCBI | |
Faibish M, Francescone R, Bentley B, Yan W and Shao R: A YKL-40-neutralizing antibody blocks tumor angiogenesis and progression: A potential therapeutic agent in cancers. Mol Cancer Ther. 10:742–751. 2011. View Article : Google Scholar : PubMed/NCBI | |
Henderson NC, Rieder F and Wynn TA: Fibrosis: From mechanisms to medicines. Nature. 587:555–566. 2020. View Article : Google Scholar : PubMed/NCBI | |
Recklies AD, White C and Ling H: The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinase- and protein kinase B-mediated signalling pathways. Biochem J. 365:119–126. 2002. View Article : Google Scholar : PubMed/NCBI | |
Theocharidis G, Thomas BE, Sarkar D, Mumme HL, Pilcher WJR, Dwivedi B, Sandoval-Schaefer T, Sîrbulescu RF, Kafanas A, Mezghani I, et al: Single cell transcriptomic landscape of diabetic foot ulcers. Nat Commun. 13:1812022. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Shan X, Guo J, Liu X and Ma D: CHI3L1 promotes myocardial fibrosis via regulating lncRNA TUG1/miR-495-3p/ETS1 axis. Apoptosis. 28:1436–1451. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shackelton LM, Mann DM and Millis AJ: Identification of a 38-kDa heparin-binding glycoprotein (gp38k) in differentiating vascular smooth muscle cells as a member of a group of proteins associated with tissue remodeling. J Biol Chem. 270:13076–13083. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bara I, Ozier A, Girodet PO, Carvalho G, Cattiaux J, Begueret H, Thumerel M, Ousova O, Kolbeck R, Coyle AJ, et al: Role of YKL-40 in bronchial smooth muscle remodeling in asthma. Am J Respir Crit Care Med. 185:715–722. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Sun Y, Shi Z, Huang H, Fang Z, Chen J, Xiu Q and Li B: YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-κB pathways, causing bronchial smooth muscle proliferation and migration. J Immunol. 190:438–446. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lambert J and Jorgensen HF: Vascular smooth muscle cell phenotypic switching and plaque stability: A role for CHI3L1. Cardiovasc Res. 117:2691–2693. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tsantilas P, Lao S, Wu Z, Eberhard A, Winski G, Vaerst M, Nanda V, Wang Y, Kojima Y, Ye J, et al: Chitinase 3 like 1 is a regulator of smooth muscle cell physiology and atherosclerotic lesion stability. Cardiovasc Res. 117:2767–2780. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mulorz J, Spin JM, Mulorz P, Wagenhäuser MU, Deng A, Mattern K, Rhee YH, Toyama K, Adam M, Schelzig H, et al: E-cigarette exposure augments murine abdominal aortic aneurysm development: Role of Chil1. Cardiovasc Res. 119:867–878. 2023. View Article : Google Scholar : PubMed/NCBI | |
Henry A, Gordillo-Maranon M, Finan C, Schmidt AF, Ferreira JP, Karra R, Sundström J, Lind L, Ärnlöv J, Zannad F, et al: Therapeutic targets for heart failure identified using proteomics and mendelian randomization. Circulation. 145:1205–1217. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sadeghi M, Dehnavi S, Asadirad A, Xu S, Majeed M, Jamialahmadi T, Johnston TP and Sahebkar A: Curcumin and chemokines: Mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacology. 31:1069–1093. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kawada M, Seno H, Kanda K, Nakanishi Y, Akitake R, Komekado H, Kawada K, Sakai Y, Mizoguchi E and Chiba T: Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene. 31:3111–3123. 2012. View Article : Google Scholar : PubMed/NCBI | |
Libreros S, Garcia-Areas R, Keating P, Carrio R and Iragavarapu-Charyulu VL: Exploring the role of CHI3L1 in ‘pre-metastatic’ lungs of mammary tumor-bearing mice. Front Physiol. 4:3922013. View Article : Google Scholar : PubMed/NCBI | |
Janelidze S, Mattsson N, Stomrud E, Lindberg O, Palmqvist S, Zetterberg H, Blennow K and Hansson O: CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology. 91:e867–e877. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kocabas R: Effect of Vitamin D on YKL-40: Rat hypercholesterolemia model. Korean Circ J. 53:92–102. 2023. View Article : Google Scholar : PubMed/NCBI | |
Francescone RA, Scully S, Faibish M, Taylor SL, Oh D, Moral L, Yan W, Bentley B and Shao R: Role of YKL-40 in the angiogenesis, radioresistance, and progression of glioblastoma. J Biol Chem. 286:15332–15343. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kognole AA and Payne CM: Inhibition of mammalian glycoprotein YKL-40: identification of the physiological ligand. J Biol Chem. 292:2624–2636. 2017. View Article : Google Scholar : PubMed/NCBI | |
Henein MY, Vancheri S, Longo G and Vancheri F: The role of inflammation in cardiovascular disease. Int J Mol Sci. 23:129062022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhang S, Wang Q and Zhang X: Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol. 10:362017. View Article : Google Scholar : PubMed/NCBI | |
Lee CG, Hartl D, Lee GR, Koller B, Matsuura H, Da Silva CA, Sohn MH, Cohn L, Homer RJ, Kozhich AA, et al: Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. J Exp Med. 206:1149–1166. 2009. View Article : Google Scholar : PubMed/NCBI | |
Olejarz W, Lacheta D and Kubiak-Tomaszewska G: Matrix metalloproteinases as biomarkers of atherosclerotic plaque instability. Int J Mol Sci. 21:39462020. View Article : Google Scholar : PubMed/NCBI | |
Liu SF, Nambiar Veetil N, Li Q, Kucherenko MM, Knosalla C and Kuebler WM: Pulmonary hypertension: Linking inflammation and pulmonary arterial stiffening. Front Immunol. 13:9592092022. View Article : Google Scholar : PubMed/NCBI | |
Jiao Y, Qin Y, Zhang Z, Zhang H, Liu H and Li C: Early identification of carotid vulnerable plaque in asymptomatic patients. BMC Cardiovasc Disord. 20:4292020. View Article : Google Scholar : PubMed/NCBI |