Role of pyruvate kinase M2 in regulating sepsis (Review)
- Authors:
- Yifei Hu
- Jing Tang
- Qiao Xu
- Zenghui Fang
- Rongqing Li
- Mengxuan Yang
- Jie Zhao
- Xin Chen
-
Affiliations: Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China, Department of Clinical Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China, Department of Clinical Laboratory, School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China - Published online on: August 16, 2024 https://doi.org/10.3892/mmr.2024.13309
- Article Number: 185
-
Copyright: © Hu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Stanski NL and Wong HR: Prognostic and predictive enrichment in sepsis. Nat Rev Nephrol. 16:20–31. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, et al: Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the global burden of disease study. Lancet. 395:200–211. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Cai S and Su J: The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. 20:53762019. View Article : Google Scholar : PubMed/NCBI | |
Rocheteau P, Chatre L, Briand D, Mebarki M, Jouvion G, Bardon J, Crochemore C, Serrani P, Lecci PP, Latil M, et al: Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by mesenchymal stem cell therapy. Nat Commun. 6:101452015. View Article : Google Scholar : PubMed/NCBI | |
Zhu CL, Wang Y, Liu Q, Li HR, Yu CM, Li P, Deng XM and Wang JF: Dysregulation of neutrophil death in sepsis. Front Immunol. 13:9639552022. View Article : Google Scholar : PubMed/NCBI | |
Zou S, Jie H, Han X and Wang J: The role of neutrophil extracellular traps in sepsis and sepsis-related acute lung injury. Int Immunopharmacol. 124:1104362023. View Article : Google Scholar : PubMed/NCBI | |
Chaplin DD: Overview of the immune response. J Allergy Clin Immunol. 125 (Suppl 2):S3–S23. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wasyluk W and Zwolak A: Metabolic alterations in sepsis. J Clin Med. 10:24122021. View Article : Google Scholar : PubMed/NCBI | |
Xiao M, Liu D, Xu Y, Mao W and Li W: Role of PFKFB3-driven glycolysis in sepsis. Ann Med. 55:1278–1289. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zlacká J and Zeman M: Glycolysis under circadian control. Int J Mol Sci. 22:136662021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z and Yu T: Lactate metabolism in human health and disease. Signal Transduct Target Ther. 7:3052022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Sun N, Li R, Sang X, Li X, Zhao J, Han J, Yang J and Ikezoe T: Targeting HLA-F suppresses the proliferation of glioma cells via a reduction in hexokinase 2-dependent glycolysis. Int J Biol Sci. 17:1263–1276. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Fan G, Liu Y, Liu L, Zhang T, Liu P, Tu Q, Zhang X, Luo S, Yao L, et al: The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis. Cell Mol Immunol. 19:504–515. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Ma H, Zhang X, Tu F, Wang X, Ha T, Fan M, Liu L, Xu J, Yu K, et al: Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. J Infect Dis. 215:1396–1406. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bar-Or D, Carrick M, Tanner A II, Lieser MJ, Rael LT and Brody E: Overcoming the Warburg effect: Is it the key to survival in sepsis? J Crit Care. 43:197–201. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wang Z and Tang D: Aerobic exercise improves LPS-induced sepsis via regulating the Warburg effect in mice. Sci Rep. 11:177722021. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X and Peng C: Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett. 503:240–248. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, Whelan J and Bettaieb A: Pyruvate kinase M2: A simple molecule with complex functions. Free Radic Biol Med. 143:176–192. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gupta V and Bamezai RN: Human pyruvate kinase M2: A multifunctional protein. Protein Sci. 19:2031–2044. 2010. View Article : Google Scholar : PubMed/NCBI | |
Swint-Kruse L, Dougherty LL, Page B, Wu T, O'Neil PT, Prasannan CB, Timmons C, Tang Q, Parente DJ, Sreenivasan S, et al: PYK-SubstitutionOME: An integrated database containing allosteric coupling, ligand affinity and mutational, structural, pathological, bioinformatic and computational information about pyruvate kinase isozymes. Database (Oxford). 2023:baad0302023. View Article : Google Scholar : PubMed/NCBI | |
Buneeva O, Kopylov A, Gnedenko O, Medvedeva M, Veselovsky A, Ivanov A, Zgoda V and Medvedev A: Proteomic profiling of mouse brain pyruvate kinase binding proteins: A hint for moonlighting functions of PKM1? Int J Mol Sci. 24:76342023. View Article : Google Scholar : PubMed/NCBI | |
Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, Hao H and Xiong J: Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 12:558–580. 2022. View Article : Google Scholar : PubMed/NCBI | |
Battisti UM, Gao C, Akladios F, Kim W, Yang H, Bayram C, Bolat I, Kiliclioglu M, Yuksel N, Tozlu OO, et al: Ellagic acid and its metabolites as potent and selective allosteric inhibitors of liver pyruvate kinase. Nutrients. 15:5772023. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Liao Z, Li S and Luo Y: Non-metabolic enzyme function of PKM2 in hepatocellular carcinoma: A review. Medicine (Baltimore). 102:e355712023. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Li C and Chen Y: Phosphoserine aminotransferase 1: A metabolic enzyme target of cancers. Curr Cancer Drug Targets. 23:171–186. 2023. View Article : Google Scholar : PubMed/NCBI | |
Noguchi T, Inoue H and Tanaka T: The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 261:13807–13812. 1986. View Article : Google Scholar : PubMed/NCBI | |
Dombrauckas JD, Santarsiero BD and Mesecar AD: Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry. 44:9417–9429. 2005. View Article : Google Scholar : PubMed/NCBI | |
Prakasam G, Iqbal MA, Bamezai RNK and Mazurek S: Posttranslational modifications of pyruvate kinase M2: Tweaks that benefit cancer. Front Oncol. 8:222018. View Article : Google Scholar : PubMed/NCBI | |
Yang YC, Cheng TY, Huang SM, Su CY, Yang PW, Lee JM, Chen CK, Hsiao M, Hua KT and Kuo ML: Cytosolic PKM2 stabilizes mutant EGFR protein expression through regulating HSP90-EGFR association. Oncogene. 35:3387–3398. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu WR, Tian MX, Yang LX, Lin YL, Jin L, Ding ZB, Shen YH, Peng YF, Gao DM, Zhou J, et al: PKM2 promotes metastasis by recruiting myeloid-derived suppressor cells and indicates poor prognosis for hepatocellular carcinoma. Oncotarget. 6:846–861. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chaneton B and Gottlieb E: Rocking cell metabolism: Revised functions of the key glycolytic regulator PKM2 in cancer. Trends Biochem Sci. 37:309–316. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bailleul J, Ruan Y, Abdulrahman L, Scott AJ, Yazal T, Sung D, Park K, Hoang H, Nathaniel J, Chu FI, et al: M2 isoform of pyruvate kinase rewires glucose metabolism during radiation therapy to promote an antioxidant response and glioblastoma radioresistance. Neuro Oncol. 25:1989–2000. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Le Y, Chen H, Zhu J and Lu D: Role of PKM2-mediated immunometabolic reprogramming on development of cytokine storm. Front Immunol. 12:7485732021. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI | |
Malla A, Gupta S and Sur R: Glycolytic enzymes in non-glycolytic web: Functional analysis of the key players. Cell Biochem Biophys. Jan 9–2024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Liang N, Mi L, Li J, Li T, Chen J, Dionigi G, Guan H and Sun H: Pan-cancer analysis of the oncogenic and prognostic role of PKM2: A potential target for survival and immunotherapy. Biomed Res Int. 2023:33751092023. View Article : Google Scholar : PubMed/NCBI | |
Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, van den Bosch MWM, Quinn SR, Domingo-Fernandez R, Johnston DGW, et al: Pyruvate kinase M2 regulates hif-1alpha activity and IL-1beta induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21:3472015. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC and Lu Z: ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 14:1295–1304. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, Tian L, Harrison DG, Giacomini JC, Assimes TL, et al: The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 213:337–354. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, et al: Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell. 42:719–730. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chhipa AS and Patel S: Targeting pyruvate kinase muscle isoform 2 (PKM2) in cancer: What do we know so far? Life Sci. 280:1196942021. View Article : Google Scholar : PubMed/NCBI | |
Palsson-McDermott EM and O'Neill LA: The Warburg effect then and now: From cancer to inflammatory diseases. Bioessays. 35:965–973. 2013. View Article : Google Scholar : PubMed/NCBI | |
Karnovsky ML: The metabolism of leukocytes. Semin Hematol. 5:156–165. 1968.PubMed/NCBI | |
Kelly B and O'Neill LA: Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25:771–784. 2015. View Article : Google Scholar : PubMed/NCBI | |
Palmer CS, Ostrowski M, Balderson B, Christian N and Crowe SM: Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol. 6:12015. View Article : Google Scholar : PubMed/NCBI | |
Jakubzick CV, Randolph GJ and Henson PM: Monocyte differentiation and antigen-presenting functions. Nat Rev Immunol. 17:349–362. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Wan X, Diao Y, Shen Z, Zhang Z, Wang P, Hu D, Wang X, Yan W, Yu C, et al: Fibrinogen-like protein 2 regulates macrophage glycolytic reprogramming by directly targeting PKM2 and exacerbates alcoholic liver injury. Int Immunopharmacol. 124:1109572023. View Article : Google Scholar : PubMed/NCBI | |
Zhou S, Lan Y, Li Y, Li Z, Pu J and Wei L: Hypoxic tumor-derived exosomes induce M2 macrophage polarization via PKM2/AMPK to promote lung cancer progression. Cell Transplant. 31:96368972211069982022. View Article : Google Scholar : PubMed/NCBI | |
Zheng YW, Wang M, Xie JW, Chen R, Wang XT, He Y, Yang TC, Liu LL and Lin LR: Recombinant Treponema pallidum protein Tp47 promoted the phagocytosis of macrophages by activating NLRP3 inflammasome induced by PKM2-dependent glycolysis. J Eur Acad Dermatol Venereol. 37:2067–2079. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zheng XQ, Li Z, Meng QQ, Li W, Li QL, Xie L, Xiao Y, Xu QY and Chen YY: Treponema pallidum recombinant protein Tp47 activates NOD-like receptor family protein 3 inflammasomes in macrophages via glycolysis. Int Immunopharmacol. 126:1112042024. View Article : Google Scholar : PubMed/NCBI | |
Zhao P, Han SN, Arumugam S, Yousaf MN, Qin Y, Jiang JX, Torok NJ, Chen Y, Mankash MS, Liu J, et al: Digoxin improves steatohepatitis with differential involvement of liver cell subsets in mice through inhibition of PKM2 transactivation. Am J Physiol Gastrointest Liver Physiol. 317:G387–G397. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao K, Wang X, Zhao D, Lin Q, Zhang Y and Hu Y: lncRNA HITT inhibits lactate production by repressing PKM2 oligomerization to reduce tumor growth and macrophage polarization. Research (Wash D C). 2022:98549042022.PubMed/NCBI | |
Zhu J and Paul WE: CD4 T cells: Fates, functions, and faults. Blood. 112:1557–1569. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bettencourt IA and Powell JD: Targeting metabolism as a novel therapeutic approach to autoimmunity, inflammation, and transplantation. J Immunol. 198:999–1005. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pearce EL and Pearce EJ: Metabolic pathways in immune cell activation and quiescence. Immunity. 38:633–643. 2013. View Article : Google Scholar : PubMed/NCBI | |
Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, Rana N, Kane H, Papadopoulou G, Pearce EL, Mills KHG and O'Neill LAJ: Pharmacological activation of pyruvate kinase M2 inhibits CD4+ T cell pathogenicity and suppresses autoimmunity. Cell Metab. 31:391–405.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jiang S: Tetrameric PKM2 activation Curbs CD4+ T cell overactivation. Trends Endocrinol Metab. 31:393–395. 2020. View Article : Google Scholar : PubMed/NCBI | |
Damasceno LEA, Prado DS, Veras FP, Fonseca MM, Toller-Kawahisa JE, Rosa MH, Públio GA, Martins TV, Ramalho FS, Waisman A, et al: PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. J Exp Med. 217:e201906132020. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Fernandez ME, Giles DA, Oates JR, Chan CC, Damen MSMA, Doll JR, Stankiewicz TE, Chen X, Chetal K, Karns R, et al: PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease. Cell Metab. 33:1187–1204.e9. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Zhang W, Zhou T, Liu Q, Han C, Huang Z, Chen S, Mei Q, Zhang C, Zhang K, et al: Vitamin B5 rewires Th17 cell metabolism via impeding PKM2 nuclear translocation. Cell Rep. 41:1117412022. View Article : Google Scholar : PubMed/NCBI | |
Walls JF, Subleski JJ, Palmieri EM, Gonzalez-Cotto M, Gardiner CM, McVicar DW and Finlay DK: Metabolic but not transcriptional regulation by PKM2 is important for natural killer cell responses. Elife. 9:e591662020. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Zhang W, Wang Y, Liu J, Hao F, Li Y, Tian M, Shu H, Dong J, Feng Y and Wei M: Pyruvate kinase M2 promotes the activation of dendritic cells by enhancing IL-12p35 expression. Cell Rep. 31:1076902020. View Article : Google Scholar : PubMed/NCBI | |
Guak H, Al Habyan S, Ma EH, Aldossary H, Al-Masri M, Won SY, Ying T, Fixman ED, Jones RG, McCaffrey LM and Krawczyk CM: Glycolytic metabolism is essential for CCR7 oligomerization and dendritic cell migration. Nat Commun. 9:24632018. View Article : Google Scholar : PubMed/NCBI | |
Deng J, Lü S, Liu H, Liu B, Jiang C, Xu Q, Feng J and Wang X: Homocysteine activates B cells via regulating PKM2-dependent metabolic reprogramming. J Immunol. 198:170–183. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Tang D and Zhang P: Changes of serum pyruvate kinase M2 level in patients with sepsis and its clinical value. Infect Drug Resist. 16:6437–6449. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Xie M, Yang M, Yu Y, Zhu S, Hou W, Kang R, Lotze MT, Billiar TR, Wang H, et al: PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun. 5:44362014. View Article : Google Scholar : PubMed/NCBI | |
Li S, Xue X, Zhang H, Jiang L, Zhang Y, Zhu X and Wang Y: Inhibition of sphingosine kinase 1 attenuates LPS-induced acute lung injury by suppressing endothelial cell pyroptosis. Chem Biol Interact. 390:1108682024. View Article : Google Scholar : PubMed/NCBI | |
Ni L, Lin B, Shen M, Li C, Hu L, Fu F, Chen L, Yang J and Shi D: PKM2 deficiency exacerbates gram-negative sepsis-induced cardiomyopathy via disrupting cardiac calcium homeostasis. Cell Death Discov. 8:4962022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Luo P, Xia F, Tang H, Chen J, Zhang J, Liu D, Zhu Y, Liu Y, Gu L, et al: Capsaicin ameliorates inflammation in a TRPV1-independent mechanism by inhibiting PKM2-LDHA-mediated Warburg effect in sepsis. Cell Chem Biol. 29:1248–1259.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ding H, Wang JJ, Zhang XY, Yin L and Feng T: Lycium barbarum polysaccharide antagonizes LPS-induced inflammation by altering the glycolysis and differentiation of macrophages by triggering the degradation of PKM2. Biol Pharm Bull. 44:379–388. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yuan L, Wang Y, Chen Y, Chen X, Li S and Liu X: Shikonin inhibits immune checkpoint PD-L1 expression on macrophage in sepsis by modulating PKM2. Int Immunopharmacol. 121:1104012023. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Wu X, Si Y, Xie J, Wang L, Liu S, Duan C, Wang Q, Wu D, Wang Y, et al: D-DI/PLT can be a prognostic indicator for sepsis. PeerJ. 11:e159102023. View Article : Google Scholar : PubMed/NCBI | |
Fu G, Deng M, Neal MD, Billiar TR and Scott MJ: Platelet-monocyte aggregates: Understanding mechanisms and functions in sepsis. Shock. 55:156–166. 2021. View Article : Google Scholar : PubMed/NCBI | |
Greco E, Lupia E, Bosco O, Vizio B and Montrucchio G: Platelets and multi-organ failure in sepsis. Int J Mol Sci. 18:22002017. View Article : Google Scholar : PubMed/NCBI | |
Nayak MK, Ghatge M, Flora GD, Dhanesha N, Jain M, Markan KR, Potthoff MJ, Lentz SR and Chauhan AK: The metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood. 137:1658–1668. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zu XL and Guppy M: Cancer metabolism: Facts, fantasy, and fiction. Biochem Biophys Res Commun. 313:459–465. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Guo Y and Tam KY: Targeting glucose metabolism to develop anticancer treatments and therapeutic patents. Expert Opin Ther Pat. 32:441–453. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Wei F, Sun G, Wen Y, Xiang J, Su F, Zhan L, Nian Q, Chen Y and Zeng J: Natural compounds targeting glycolysis as promising therapeutics for gastric cancer: A review. Front Pharmacol. 13:10043832022. View Article : Google Scholar : PubMed/NCBI | |
Shan W, Zhou Y and Tam KY: The development of small-molecule inhibitors targeting hexokinase 2. Drug Discov Today. 27:2574–2585. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu JQ, Fu YL, Zhang J, Zhang KY, Ma J, Tang JY, Zhang ZW and Zhou ZY: Targeting glycolysis in non-small cell lung cancer: Promises and challenges. Front Pharmacol. 13:10373412022. View Article : Google Scholar : PubMed/NCBI | |
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T and Shao P: Glycolysis rate-limiting enzymes: Novel potential regulators of rheumatoid arthritis pathogenesis. Front Immunol. 12:7797872021. View Article : Google Scholar : PubMed/NCBI |