Roles of small GTPases in cardiac hypertrophy (Review)
- Authors:
- Xin Wang
- Xinwen Nie
- Hao Wang
- Zhanhong Ren
-
Affiliations: School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China - Published online on: September 19, 2024 https://doi.org/10.3892/mmr.2024.13332
- Article Number: 208
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Shimizu I and Minamino T: Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 97:245–262. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tham YK, Bernardo BC, Ooi JY, Weeks KL and McMullen JR: Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch Toxicol. 89:1401–1438. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nakamura M and Sadoshima J: Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 15:387–407. 2018. View Article : Google Scholar : PubMed/NCBI | |
Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, Popov AF, Dohmen PM, Choi YH, Wahlers T and Weymann A: Cardiac Hypertrophy: An introduction to molecular and cellular basis. Med Sci Monit Basic Res. 22:75–79. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gallo S, Vitacolonna A, Bonzano A, Comoglio P and Crepaldi T: ERK: A key player in the pathophysiology of cardiac hypertrophy. Int J Mol Sci. 20:21642019. View Article : Google Scholar : PubMed/NCBI | |
Oka T, Akazawa H, Naito AT and Komuro I: Angiogenesis and cardiac hypertrophy: Maintenance of cardiac function and causative roles in heart failure. Circ Res. 114:565–571. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lezoualc'h F, Métrich M, Hmitou I, Duquesnes N and Morel E: Small GTP-binding proteins and their regulators in cardiac hypertrophy. J Mol Cell Cardiol. 44:623–632. 2008. View Article : Google Scholar : PubMed/NCBI | |
Clerk A and Sugden PH: Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res. 86:1019–1023. 2000. View Article : Google Scholar : PubMed/NCBI | |
Matozaki T, Nakanishi H and Takai Y: Small G-protein networks: Their crosstalk and signal cascades. Cell Signal. 12:515–524. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lundquist EA: Small GTPases. Greenwald I: WormBook; pp. 1–18. 2006, PubMed/NCBI | |
Wennerberg K, Rossman KL and Der CJ: The Ras superfamily at a glance. J Cell Sci. 118:843–846. 2005. View Article : Google Scholar : PubMed/NCBI | |
Reiner DJ and Lundquist EA: Small GTPases. WormBook. 2018:1–65. 2018. View Article : Google Scholar : PubMed/NCBI | |
Karnoub AE and Weinberg RA: Ras oncogenes: Split personalities. Nat Rev Mol Cell Biol. 9:517–531. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ramos-Kuri M, Meka SH, Salamanca-Buentello F, Hajjar RJ, Lipskaia L and Chemaly ER: Molecules linked to Ras signaling as therapeutic targets in cardiac pathologies. Biol Res. 54:232021. View Article : Google Scholar : PubMed/NCBI | |
Ramirez MT, Sah VP, Zhao XL, Hunter JJ, Chien KR and Brown JH: The MEKK-JNK pathway is stimulated by alpha1-adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J Biol Chem. 272:14057–14061. 1997. View Article : Google Scholar : PubMed/NCBI | |
Matsuda T, Jeong JI, Ikeda S, Yamamoto T, Gao S, Babu GJ, Zhai P and Del Re DP: H-Ras isoform mediates protection against pressure overload-induced cardiac dysfunction in part through activation of AKT. Circ Heart Fail. 10:e0036582017. View Article : Google Scholar : PubMed/NCBI | |
Aikawa R, Nagai T, Kudoh S, Zou Y, Tanaka M, Tamura M, Akazawa H, Takano H, Nagai R and Komuro I: Integrins play a critical role in mechanical stress-induced p38 MAPK activation. Hypertension. 39:233–238. 2022. View Article : Google Scholar | |
Heasman SJ and Ridley AJ: Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat Rev Mol Cell Biol. 9:690–701. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schlessinger K, Hall A and Tolwinski N: Wnt signaling pathways meet Rho GTPases. Genes Dev. 23:265–277. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mosaddeghzadeh N and Ahmadian MR: The RHO Family GTPases: Mechanisms of regulation and signaling. Cells. 10:18312021. View Article : Google Scholar : PubMed/NCBI | |
Mackay DJ and Hall A: Rho GTPases. J Biol Chem. 273:20685–20688. 1998. View Article : Google Scholar : PubMed/NCBI | |
Schwartz SL, Cao C, Pylypenko O, Rak A and Wandinger-Ness A: Rab GTPases at a glance. J Cell Sci. 120:3905–3910. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jackson CL and Bouvet S: Arfs at a glance. J Cell Sci. 127:4103–4109. 2014.PubMed/NCBI | |
Yoneda Y, Hieda M, Nagoshi E and Miyamoto Y: Nucleocytoplasmic protein transport and recycling of Ran. Cell Struct Funct. 24:425–433. 1999. View Article : Google Scholar : PubMed/NCBI | |
Na W, Peng G, Jianping Z, Yanzhong C, Shengjiang G and Li C: RhoA/ROCK may involve in cardiac hypertrophy induced by experimental hyperthyroidism. Toxicol Ind Health. 28:831–839. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Xu C, Jiang Z and Jiang X: DEF6(differentially exprehomolog) exacerbates pathological cardiac hypertrophy via RAC1. Cell Death Dis. 14:4832023. View Article : Google Scholar : PubMed/NCBI | |
Lin KH, Kumar VB, Shanmugam T, Shibu MA, Chen RJ, Kuo CH, Ho TJ, Padma VV, Yeh YL and Huang CY: miR-145-5p targets paxillin to attenuate angiotensin II-induced pathological cardiac hypertrophy via downregulation of Rac 1, pJNK, p-c-Jun, NFATc3, ANP and by Sirt-1 upregulation. Mol Cell Biochem. 476:3253–3260. 2021. View Article : Google Scholar : PubMed/NCBI | |
Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Hikoso S, Kashiwase K, Takeda T, Watanabe T, et al: The small GTP-binding protein Rac1 induces cardiac myocyte hypertrophy through the activation of apoptosis signal-regulating kinase 1 and nuclear factor-kappa B. J Biol Chem. 278:20770–20777. 2003. View Article : Google Scholar : PubMed/NCBI | |
Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ and Liao JK: Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci USA. 103:7432–7437. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aikawa R, Nagai T, Tanaka M, Zou Y, Ishihara T, Takano H, Hasegawa H, Akazawa H, Mizukami M, Nagai R and Komuro I: Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. Biochem Biophys Res Commun. 289:901–907. 2001. View Article : Google Scholar : PubMed/NCBI | |
Maillet M, Lynch JM, Sanna B, York AJ, Zheng Y and Molkentin JD: Cdc42 is an antihypertrophic molecular switch in the mouse heart. J Clin Invest. 119:3079–3088. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zheng X and Wu X: The Rab GTPase in the heart: Pivotal roles in development and disease. Life Sci. 306:1208062022. View Article : Google Scholar : PubMed/NCBI | |
Tomazini A and Shifman JM: Targeting Ras with protein engineering. Oncotarget. 14:672–687. 2023. View Article : Google Scholar : PubMed/NCBI | |
Apken LH and Oeckinghaus A: The RAL signaling network: Cancer and beyond. Int Rev Cell Mol Biol. 361:21–105. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi GX, Cai W and Andres DA: Rit subfamily small GTPases: Regulators in neuronal differentiation and survival. Cell Signal. 25:2060–2068. 2013. View Article : Google Scholar : PubMed/NCBI | |
Minato N: Rap G protein signal in normal and disordered lymphohematopoiesis. Exp Cell Res. 319:2323–2328. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Zhou X, Guan KL and Zhang J: Rheb regulates nuclear mTORC1 activity independent of farnesylation. Cell Chem Biol. 29:1037–1045.e4. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Pang D, Chen M, Du C, Jia L, Wang L, He Y, Jiang W, Luo L, Yu Z, et al: Rheb mediates neuronal-activity-induced mitochondrial energetics through mTORC1-independent PDH activation. Dev Cell. 56:811–825.e6. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chang Y, Li X, Li X, Gao J, Zhou Y, Wu F, Bai R, Dong T, Ma S, et al: RAD-Deficient human cardiomyocytes develop hypertrophic cardiomyopathy phenotypes due to calcium dysregulation. Front Cell Dev Biol. 8:5858792020. View Article : Google Scholar : PubMed/NCBI | |
Chang L, Zhang J, Tseng YH, Xie CQ, Ilany J, Brüning JC, Sun Z, Zhu X, Cui T, Youker KA, et al: Rad GTPase deficiency leads to cardiac hypertrophy. Circulation. 116:2976–2983. 2007. View Article : Google Scholar : PubMed/NCBI | |
Thorburn A, Thorburn J, Chen SY, Powers S, Shubeita HE, Feramisco JR and Chien KR: HRas-dependent pathways can activate morphological and genetic markers of cardiac muscle cell hypertrophy. J Biol Chem. 268:2244–2249. 1993. View Article : Google Scholar : PubMed/NCBI | |
Ramos-Kuri M, Rapti K, Mehel H, Zhang S, Dhandapany PS, Liang L, García-Carrancá A, Bobe R, Fischmeister R, Adnot S, et al: Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy. Biochim Biophys Acta. 1853:2870–2884. 2015. View Article : Google Scholar : PubMed/NCBI | |
Petrich BG and Wang Y: Stress-activated MAP kinases in cardiac remodeling and heart failure; new insights from transgenic studies. Trends Cardiovasc Med. 14:50–55. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ichida M and Finkel T: Ras regulates NFAT3 activity in cardiac myocytes. J Biol Chem. 276:3524–3530. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lange-Carter CA and Johnson GL: Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science. 265:1458–1461. 1994. View Article : Google Scholar : PubMed/NCBI | |
Russell M, Lange-Carter CA and Johnson GL: Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J Biol Chem. 270:11757–11760. 1995. View Article : Google Scholar : PubMed/NCBI | |
Reynet C and Kahn CR: Rad: A member of the Ras family overexpressed in muscle of type II diabetic humans. Science. 262:1441–1444. 1993. View Article : Google Scholar : PubMed/NCBI | |
Cho KJ, Hill MM, Chigurupati S, Du G, Parton RG and Hancock JF: Therapeutic levels of the hydroxmethylglutaryl-coenzyme A reductase inhibitor lovastatin activate ras signaling via phospholipase D2. Mol Cell Biol. 31:1110–1120. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ding J, Chen YX, Chen Y, Mou Y, Sun XT, Dai DP, Zhao CZ, Yang J, Hu SJ and Guo X: Overexpression of FNTB and the activation of Ras induce hypertrophy and promote apoptosis and autophagic cell death in cardiomyocytes. J Cell Mol Med. 24:8998–9011. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Han J, Li L, Wang KJ and Hu SJ: Effect of farnesyltransferase inhibition on cardiac remodeling in spontaneously hypertensive rats. Int J Cardiol. 168:3340–3347. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cai T, Abel L, Langford O, Monaghan G, Aronson JK, Stevens RJ, Lay-Flurrie S, Koshiaris C, McManus RJ, Hobbs FDR and Sheppard JP: Associations between statins and adverse events in primary prevention of cardiovascular disease: Systematic review with pairwise, network and dose-response meta-analyses. BMJ. 374:n15372021. View Article : Google Scholar : PubMed/NCBI | |
Jaiswal M, Dvorsky R and Ahmadian MR: Deciphering the molecular and functional basis of Dbl family proteins: A novel systematic approach toward classification of selective activation of the Rho family proteins. J Biol Chem. 288:4486–4500. 2013. View Article : Google Scholar : PubMed/NCBI | |
Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K and Karoor V: RhoGTPase in vascular disease. Cells. 8:5512019. View Article : Google Scholar : PubMed/NCBI | |
Lee CF, Carley RE, Butler CA and Morrison AR: Rac GTPase signaling in immune-mediated mechanisms of atherosclerosis. Cells. 10:28082021. View Article : Google Scholar : PubMed/NCBI | |
Nguyen DT, Gao L, Wong A and Chen CS: Cdc42 regulates branching in angiogenic sprouting in vitro. Microcirculation. 24:10.1111/micc.12372. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lv J, Zeng J, Guo F, Li Y, Xu M, Cheng Y, Zhang L, Cai S, Chen Y, Zheng Y and Hu G: Endothelial Cdc42 deficiency impairs endothelial regeneration and vascular repair after inflammatory vascular injury. Respir Res. 19:272018. View Article : Google Scholar : PubMed/NCBI | |
Basbous S, Azzarelli R, Pacary E and Moreau V: Pathophysiological functions of Rnd proteins. Small GTPases. 12:336–357. 2021. View Article : Google Scholar : PubMed/NCBI | |
Blom M, Reis K and Aspenström P: RhoD localization and function is dependent on its GTP/GDP-bound state and unique N-terminal motif. Eur J Cell Biol. 97:393–401. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ahmad Mokhtar AM, Hashim IF, Mohd Zaini Makhtar M, Salikin NH and Amin-Nordin S: The Role of RhoH in TCR signalling and its involvement in diseases. Cells. 10:9502021. View Article : Google Scholar : PubMed/NCBI | |
Kilian LS, Voran J, Frank D and Rangrez AY: RhoA: A dubious molecule in cardiac pathophysiology. J Biomed Sci. 28:332021. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G and Brown JH: Revisited and revised: is RhoA always a villain in cardiac pathophysiology? J Cardiovasc Transl Res. 3:330–343. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Wei SS, Wang H, Wang Q, Li W, Li G, Hou JW, Chen XM, Chen J, Xu WP, et al: Crucial Role of ROCK2-Mediated phosphorylation and upregulation of FHOD3 in the pathogenesis of angiotensin II-induced cardiac hypertrophy. Hypertension. 69:1070–1083. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sakaguchi T, Takefuji M, Wettschureck N, Hamaguchi T, Amano M, Kato K, Tsuda T, Eguchi S, Ishihama S, Mori Y, et al: Protein Kinase N promotes stress-induced cardiac dysfunction through phosphorylation of myocardin-related transcription factor A and disruption of its interaction with actin. Circulation. 140:1737–1752. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Qu Q, Dai Y, Ren D, Qian J and Ge J: Detrimental Role of PDZ-RhoGEF in pathological cardiac hypertrophy. Hypertension. 80:403–415. 2023. View Article : Google Scholar : PubMed/NCBI | |
Aoki H, Izumo S and Sadoshima J: Angiotensin II activates RhoA in cardiac myocytes: A critical role of RhoA in angiotensin II-induced premyofibril formation. Circ Res. 82:666–676. 1998. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K and Narumiya S: ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 392:189–193. 1996. View Article : Google Scholar : PubMed/NCBI | |
Zhang YM, Bo J, Taffet GE, Chang J, Shi J, Reddy AK, Michael LH, Schneider MD, Entman ML, Schwartz RJ and Wei L: Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J. 20:916–925. 2006. View Article : Google Scholar : PubMed/NCBI | |
Okamoto R, Li Y, Noma K, Hiroi Y, Liu PY, Taniguchi M, Ito M and Liao JK: FHL2 prevents cardiac hypertrophy in mice with cardiac-specific deletion of ROCK2. FASEB J. 27:1439–1449. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shimizu T, Narang N, Chen P, Yu B, Knapp M, Janardanan J, Blair J and Liao JK: Fibroblast deletion of ROCK2 attenuates cardiac hypertrophy, fibrosis and diastolic dysfunction. JCI Insight. 2:e931872017. View Article : Google Scholar : PubMed/NCBI | |
Ikeda S, Satoh K, Kikuchi N, Miyata S, Suzuki K, Omura J, Shimizu T, Kobayashi K, Kobayashi K, Fukumoto Y, et al: Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice. Arterioscler Thromb Vasc Biol. 34:1260–1271. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pracyk JB, Tanaka K, Hegland DD, Kim KS, Sethi R, Rovira II, Blazina DR, Lee L, Bruder JT, Kovesdi I, et al: A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. J Clin Invest. 102:929–937. 1998. View Article : Google Scholar : PubMed/NCBI | |
Elnakish MT, Moldovan L, Khan M, Hassanain HH and Janssen PM: Myocardial Rac1 exhibits partial involvement in thyroxin-induced cardiomyocyte hypertrophy and its inhibition is not sufficient to improve cardiac dysfunction or contractile abnormalities in mouse papillary muscles. J Cardiovasc Pharmacol. 61:536–544. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li PL, Liu H, Chen GP, Li L, Shi HJ, Nie HY, Liu Z, Hu YF, Yang J, Zhang P, et al: STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) Inhibits Pathological Cardiac Hypertrophy. Hypertension. 76:1219–1230. 2020. View Article : Google Scholar : PubMed/NCBI | |
Clerk A, Pham FH, Fuller SJ, Sahai E, Aktories K, Marais R, Marshall C and Sugden PH: Regulation of mitogen-activated protein kinases in cardiac myocytes through the small G protein Rac1. Mol Cell Biol. 21:1173–1184. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sawada N, Li Y and Liao JK: Novel aspects of the roles of Rac1 GTPase in the cardiovascular system. Curr Opin Pharmacol. 10:116–121. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cacciapuoti F: Molecular mechanisms of left ventricular hypertrophy (LVH) in systemic hypertension (SH)-possible therapeutic perspectives. J Am Soc Hypertens. 5:449–455. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hauck L, Harms C, Grothe D, An J, Gertz K, Kronenberg G, Dietz R, Endres M and von Harsdorf R: Critical role for FoxO3a-dependent regulation of p21CIP1/WAF1 in response to statin signaling in cardiac myocytes. Circ Res. 100:50–60. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moradi A, Maroofi A, Hemati M, Hashemzade T, Alborzi N and Safari F: Inhibition of GTPase Rac1 expression by vitamin D mitigates pressure overload-induced cardiac hypertrophy. Int J Cardiol Heart Vasc. 37:1009222021.PubMed/NCBI | |
Zhang C, Jin DD, Wang XY, Lou L and Yang J: Key enzymes for the mevalonate pathway in the cardiovascular system. J Cardiovasc Pharmacol. 77:142–152. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zeidan A, Gan XT, Thomas A and Karmazyn M: Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes. Mol Cell Biochem. 385:239–248. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fan S, Xiong Q, Zhang X, Zhang L and Shi Y: Glucagon-like peptide 1 reverses myocardial hypertrophy through cAMP/PKA/RhoA/ROCK2 signaling. Acta Biochim Biophys Sin (Shanghai). 52:612–619. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tawara S and Shimokawa H: Progress of the study of rho-kinase and future perspective of the inhibitor. Yakugaku Zasshi. 127:501–514. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Wu S: Effects of fasudil on pulmonary hypertension in clinical practice. Pulm Pharmacol Ther. 46:54–63. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bock JB, Matern HT, Peden AA and Scheller RH: A genomic perspective on membrane compartment organization. Nature. 409:839–841. 2001. View Article : Google Scholar : PubMed/NCBI | |
Stenmark H and Olkkonen VM: The Rab GTPase family. Genome Biol. 2:REVIEWS30072001. View Article : Google Scholar : PubMed/NCBI | |
Pereira-Leal JB and Seabra MC: The mammalian Rab family of small GTPases: Definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol. 301:1077–1087. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yang XZ, Li XX, Zhang YJ, Rodriguez-Rodriguez L, Xiang MQ, Wang HY and Zheng XF: Rab1 in cell signaling, cancer and other diseases. Oncogene. 35:5699–5704. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schonn JS, van Weering JR, Mohrmann R, Schlüter OM, Südhof TC, de Wit H, Verhage M and Sørensen JB: Rab3 proteins involved in vesicle biogenesis and priming in embryonic mouse chromaffin cells. Traffic. 11:1415–1428. 2010. View Article : Google Scholar : PubMed/NCBI | |
Filipeanu CM, Zhou F, Lam ML, Kerut KE, Claycomb WC and Wu G: Enhancement of the recycling and activation of beta-adrenergic receptor by Rab4 GTPase in cardiac myocytes. J Biol Chem. 281:11097–11103. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xu W, Fang F, Ding J and Wu C: Dysregulation of Rab5-mediated endocytic pathways in Alzheimer's disease. Traffic. 19:253–262. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dornan LG and Simpson JC: Rab6-mediated retrograde trafficking from the Golgi: The trouble with tubules. Small GTPases. 14:26–44. 2023. View Article : Google Scholar : PubMed/NCBI | |
Stypulkowski E, Feng Q, Joseph I, Farrell V, Flores J, Yu S, Sakamori R, Sun J, Bandyopadhyay S, Das S, et al: Rab8 attenuates Wnt signaling and is required for mesenchymal differentiation into adipocytes. J Biol Chem. 296:1004882021. View Article : Google Scholar : PubMed/NCBI | |
Wilson B, Flett C, Gemperle J, Lawless C, Hartshorn M, Hinde E, Harrison T, Chastney M, Taylor S, Allen J, et al: Proximity labelling identifies pro-migratory endocytic recycling cargo and machinery of the Rab4 and Rab11 families. J Cell Sci. 136:jcs2604682023. View Article : Google Scholar : PubMed/NCBI | |
Banworth MJ and Li G: Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases. 9:158–181. 2018. View Article : Google Scholar : PubMed/NCBI | |
Banworth MJ, Liang Z and Li G: A novel membrane targeting domain mediates the endosomal or Golgi localization specificity of small GTPases Rab22 and Rab31. J Biol Chem. 298:1022812022. View Article : Google Scholar : PubMed/NCBI | |
Izumi T: In vivo Roles of Rab27 and its effectors in exocytosis. Cell Struct Funct. 46:79–94. 2021. View Article : Google Scholar : PubMed/NCBI | |
Neumann AJ and Prekeris R: A Rab-bit hole: Rab40 GTPases as new regulators of the actin cytoskeleton and cell migration. Front Cell Dev Biol. 11:12689222023. View Article : Google Scholar : PubMed/NCBI | |
Moore I, Schell J and Palme K: Subclass-specific sequence motifs identified in Rab GTPases. Trends Biochem Sci. 20:10–12. 1995. View Article : Google Scholar : PubMed/NCBI | |
Filipeanu CM, Zhou F and Wu G: Analysis of Rab1 function in cardiomyocyte growth. Methods Enzymol. 438:217–226. 2008. View Article : Google Scholar : PubMed/NCBI | |
Etzion S, Etzion Y, DeBosch B, Crawford PA and Muslin AJ: Akt2 deficiency promotes cardiac induction of Rab4a and myocardial β-adrenergic hypersensitivity. J Mol Cell Cardiol. 49:931–940. 2010. View Article : Google Scholar : PubMed/NCBI | |
Seachrist JL and Ferguson SS: Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life Sci. 74:225–235. 2003. View Article : Google Scholar : PubMed/NCBI | |
Del Calvo G, Baggio Lopez T and Lymperopoulos A: The therapeutic potential of targeting cardiac RGS4. Ther Adv Cardiovasc Dis. 17:175394472311993502023. View Article : Google Scholar : PubMed/NCBI | |
Lymperopoulos A, Borges JI and Stoicovy RA: RGS proteins and cardiovascular Angiotensin II Signaling: Novel opportunities for therapeutic targeting. Biochem Pharmacol. 218:1159042023. View Article : Google Scholar : PubMed/NCBI | |
Magalhaes AC, Dunn H and Ferguson SS: Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharmacol. 165:1717–1736. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rogers JH, Tamirisa P, Kovacs A, Weinheimer C, Courtois M, Blumer KJ, Kelly DP and Muslin AJ: RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J Clin Invest. 104:567–576. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chidiac P, Sobiesiak AJ, Lee KN, Gros R and Nguyen CH: The eIF2B-interacting domain of RGS2 protects against GPCR agonist-induced hypertrophy in neonatal rat cardiomyocytes. Cell Signal. 26:1226–1234. 2014. View Article : Google Scholar : PubMed/NCBI |