1
|
Frangogiannis NG: Cardiac fibrosis.
Cardiovasc Res. 117:1450–1488. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Karamitsos TD, Arvanitaki A, Karvounis H,
Neubauer S and Ferreira VM: Myocardial tissue characterization and
fibrosis by imaging. JACC Cardiovasc Imaging. 13:1221–1234. 2020.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Talman V and Ruskoaho H: Cardiac fibrosis
in myocardial infarction-from repair and remodeling to
regeneration. Cell Tissue Res. 365:563–581. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Weber KT, Janicki JS, Shroff SG, Pick R,
Chen RM and Bashey RI: Collagen remodeling of the
pressure-overloaded, hypertrophied nonhuman primate myocardium.
Circ Res. 62:757–765. 1988. View Article : Google Scholar : PubMed/NCBI
|
5
|
Schlittler M, Pramstaller PP, Rossini A
and De Bortoli M: Myocardial fibrosis in hypertrophic
cardiomyopathy: A perspective from fibroblasts. Int J Mol Sci.
24:148452023. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kong P, Christia P and Frangogiannis NG:
The pathogenesis of cardiac fibrosis. Cell Mol Life Sci.
71:549–574. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Roubille F, Busseuil D, Merlet N, Kritikou
EA, Rhéaume E and Tardif JC: Investigational drugs targeting
cardiac fibrosis. Expert Rev Cardiovasc Ther. 12:111–125. 2014.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu
L, Zhao M, Liu Q, Cheng Z, Zou J, et al: Naturally occurring
anti-cancer compounds: Shining from Chinese herbal medicine. Chin
Med. 14:482019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ren C, Zhao X, Liu K, Wang L, Chen Q,
Jiang H, Gao X, Lv X, Zhi X, Wu X and Li Y: Research progress of
natural medicine Astragalus mongholicus Bunge in treatment of
myocardial fibrosis. J Ethnopharmacol. 305:1161282023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang Y, Wang H, Cui L, Zhang Y, Liu Y,
Chu X, Liu Z, Zhang J and Chu L: Continuing treatment with salvia
miltiorrhiza injection attenuates myocardial fibrosis in chronic
iron-overloaded mice. PLoS One. 10:e01240612015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gorabi AM, Hajighasemi S, Kiaie N, Rosano
GMC, Sathyapalan T, Al-Rasadi K and Sahebkar A: Anti-fibrotic
effects of curcumin and some of its analogues in the heart. Heart
Fail Rev. 25:731–743. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang T, Jiang X, Ruan Y, Zhuang J and Yin
Y: Based on network pharmacology and in vitro experiments to prove
the effective inhibition of myocardial fibrosis by Buyang Huanwu
decoction. Bioengineered. 13:13767–13783. 2022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Pu WL, Zhang MY, Bai RY, Sun LK, Li WH, Yu
YL, Zhang Y, Song L, Wang ZX, Peng YF, et al: Anti-inflammatory
effects of Rhodiola rosea L.: A review. Biomed Pharmacother.
121:1095522020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gao H, Tian K, Meng Y, Liu X and Peng Y:
Salidroside ameliorates cardiomyocyte hypertrophy by upregulating
peroxisome proliferator-activated receptor-α. Front Pharmacol.
13:8654342022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen Y, Tang M, Yuan S, Fu S, Li Y, Li Y,
Wang Q, Cao Y, Liu L and Zhang Q: Rhodiola rosea: A therapeutic
candidate on cardiovascular diseases. Oxid Med Cell Longev.
2022:13487952022.PubMed/NCBI
|
16
|
Ye Q, Zhou Y, Zhao C, Xu L and Ping J:
Salidroside inhibits CCl4-induced liver fibrosis in mice by
reducing activation and migration of HSC induced by liver
sinusoidal endothelial cell-derived exosomal SphK1. Front
Pharmacol. 12:6778102021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Hinz B: Myofibroblasts. Exp Eye Res.
142:56–70. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xu F, Xu J, Xiong X and Deng Y:
Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in
psoriasis-associated oxidative stress via SIRT1 activation. Redox
Rep. 24:70–74. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fang ZY, Zhang M, Liu JN, Zhao X, Zhang YQ
and Fang L: Tanshinone IIA: A review of its anticancer effects.
Front Pharmacol. 11:6110872020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yu T, Xu J, Wang Q, Han X, Tu Y, Wang Y,
Luo W, Wang M and Liang G: 20(S)-ginsenoside Rh2 inhibits
angiotensin-2 mediated cardiac remodeling and inflammation
associated with suppression of the JNK/AP-1 pathway. Biomed
Pharmacother. 169:1158802023. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fan Y, Shen J, Liu X, Cui J, Liu J, Peng D
and Jin Y: β-Sitosterol suppresses lipopolysaccharide-induced
inflammation and lipogenesis disorder in bovine mammary epithelial
cells. Int J Mol Sci. 24:146442023. View Article : Google Scholar : PubMed/NCBI
|
23
|
Hai Z, Wu Y and Ning Z: Salidroside
attenuates atrial fibrosis and atrial fibrillation vulnerability
induced by angiotensin-II through inhibition of
LOXL2-TGF-β1-Smad2/3 pathway. Heliyon. 9:e212202023. View Article : Google Scholar : PubMed/NCBI
|
24
|
Safarpour S, Pirzadeh M, Ebrahimpour A,
Shirafkan F, Madani F, Hosseini M, Moghadamnia AA and Kazemi S:
protective effect of kaempferol and its nanoparticles on
5-fluorouracil-induced cardiotoxicity in rats. Biomed Res Int.
2022:22730002022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Y, Han J, Luo L, Kasim V and Wu S:
Salidroside facilitates therapeutic angiogenesis in diabetic
hindlimb ischemia by inhibiting ferroptosis. Biomed Pharmacother.
159:1142452023. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tang X, Yan T, Wang S, Liu Q, Yang Q,
Zhang Y, Li Y, Wu Y, Liu S, Ma Y and Yang L: Treatment with
β-sitosterol ameliorates the effects of cerebral
ischemia/reperfusion injury by suppressing cholesterol overload,
endoplasmic reticulum stress, and apoptosis. Neural Regen Res.
19:642–649. 2024. View Article : Google Scholar : PubMed/NCBI
|
27
|
Song W, Dai B and Dai Y: Influence of
ginsenoside Rh2 on cardiomyocyte pyroptosis in rats with acute
myocardial infarction. Evid Based Complement Alternat Med.
2022:51945232022. View Article : Google Scholar : PubMed/NCBI
|
28
|
Li L, Yang Y, Zhang H, Du Y, Jiao X, Yu H,
Wang Y, Lv Q, Li F, Sun Q and Qin Y: Salidroside ameliorated
intermittent hypoxia-aggravated endothelial barrier disruption and
atherosclerosis via the cAMP/PKA/RhoA signaling pathway. Front
Pharmacol. 12:7239222021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ni J, Li Y, Xu Y and Guo R: Salidroside
protects against cardiomyocyte apoptosis and ventricular remodeling
by AKT/HO-1 signaling pathways in a diabetic cardiomyopathy mouse
model. Phytomedicine. 82:1534062021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xing N, Qin J, Ren D, Du Q, Li Y, Mi J,
Zhang F, Ai L, Zhang S, Zhang Y and Wang S: Integrating
UPLC-Q-Exactive Orbitrap/MS, network pharmacology and experimental
validation to reveal the potential mechanism of Tibetan medicine
Rhodiola granules in improving myocardial ischemia-reperfusion
injury. J Ethnopharmacol. 314:1165722023. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shinde AV, Humeres C and Frangogiannis NG:
The role of α-smooth muscle actin in fibroblast-mediated matrix
contraction and remodeling. Biochim Biophys Acta Mol Basis Dis.
1863:298–309. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Medarametla GD, Kahlon RS, Mahitha L,
Shariff S, Vakkalagadda NP, Chopra H, Kamal MA, Patel N, Sethi Y
and Kaka N: Cardiac amyloidosis: Evolving pathogenesis, multimodal
diagnostics, and principles of treatment. EXCLI J. 22:781–808.
2023.PubMed/NCBI
|
33
|
Argon A, Nart D and Yilmazbarbet F:
Cardiac amyloidosis: Clinical features, pathogenesis, diagnosis,
and treatment. Turk Patoloji Derg. 40:1–9. 2024.PubMed/NCBI
|
34
|
Yang S, Pei T, Wang L, Zeng Y, Li W, Yan
S, Xiao W and Cheng W: Salidroside alleviates renal fibrosis in
SAMP8 mice by inhibiting ferroptosis. Molecules. 27:80392022.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang Y, Liao J, Luo Y, Li M, Su X, Yu B,
Teng J, Wang H and Lv X: Berberine alleviates doxorubicin-induced
myocardial injury and fibrosis by eliminating oxidative stress and
mitochondrial damage via promoting Nrf-2 pathway activation. Int J
Mol Sci. 24:32572023. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li D, Guo YY, Cen XF, Qiu HL, Chen S, Zeng
XF, Zeng Q, Xu M and Tang QZ: Lupeol protects against cardiac
hypertrophy via TLR4-PI3K-Akt-NF-κB pathways. Acta Pharmacol Sin.
43:1989–2002. 2022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Jäntti T, Tarvasmäki T, Harjola VP,
Parissis J, Pulkki K, Javanainen T, Tolppanen H, Jurkko R, Hongisto
M, Kataja A, et al: Hypoalbuminemia is a frequent marker of
increased mortality in cardiogenic shock. PLoS One.
14:e02170062019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ren B, Feng J, Yang N, Guo Y, Chen C and
Qin Q: Ginsenoside Rg3 attenuates angiotensin II-induced myocardial
hypertrophy through repressing NLRP3 inflammasome and oxidative
stress via modulating SIRT1/NF-κB pathway. Int Immunopharmacol.
98:1078412021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Frangogiannis NG: Cardiac fibrosis: Cell
biological mechanisms, molecular pathways and therapeutic
opportunities. Mol Aspects Med. 65:70–99. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Brilla CG: Renin-angiotensin-aldosterone
system and myocardial fibrosis. Cardiovasc Res. 47:1–3. 2000.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Töx U and Steffen HM: Impact of inhibitors
of the Renin-Angiotensin-aldosterone system on liver fibrosis and
portal hypertension. Curr Med Chem. 13:3649–3661. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang J, Guo R, Ma X, Wang Y, Zhang Q,
Zheng N, Zhang J and Li C: Liraglutide inhibits AngII-induced
cardiac fibroblast proliferation and ECM deposition through
regulating miR-21/PTEN/PI3K pathway. Cell Tissue Bank. 24:125–137.
2023. View Article : Google Scholar : PubMed/NCBI
|