1
|
Zannetti A: Breast cancer: From
pathophysiology to novel therapeutic Approaches 2.0. Int J Mol Sci.
24:25422023. View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Houghton SC and Hankinson SE: Cancer
progress and priorities: Breast cancer. Cancer Epidemiol Biomarkers
Prev. 30:822–844. 2021. View Article : Google Scholar : PubMed/NCBI
|
4
|
De Rose F, Meduri B, De Santis MC, Ferro
A, Marino L, Colciago RR, Gregucci F, Vanoni V, Apolone G, Di
Cosimo S, et al: Rethinking breast cancer follow-up based on
individual risk and recurrence management. Cancer Treat Rev.
109:1024342022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Parisi S, Gambardella C, Conzo G, Ruggiero
R, Tolone S, Lucido FS, Iovino F, Fisone F, Brusciano L,
Parmeggiani D and Docimo L: Advanced localization technique for
non-palpable breast cancer: Radiofrequency alone VS combined
technique with ultrasound. J Clin Med. 12:50762023. View Article : Google Scholar : PubMed/NCBI
|
6
|
Parisi S, Ruggiero R, Gualtieri G, Volpe
ML, Rinaldi S, Nesta G, Bogdanovich L, Lucido FS, Tolone S,
Parmeggiani D, et al: Combined LOCalizer™ and intraoperative
ultrasound localization: First experience in localization of
non-palpable breast cancer. In Vivo. 35:1669–1676. 2021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kawiak A: Molecular research and treatment
of breast cancer. Int J Mol Sci. 23:96172022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282, 2021.9. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen X, Kang R, Kroemer G and Tang D:
Broadening horizons: The role of ferroptosis in cancer. Nat Rev
Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu J, Kang R and Tang D: Signaling
pathways and defense mechanisms of ferroptosis. Febs J.
289:7038–7050. 2022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sun S, Shen J, Jiang J, Wang F and Min J:
Targeting ferroptosis opens new avenues for the development of
novel therapeutics. Signal Transduct Target Ther. 8:3722023.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang
J, Chen Y, Zhuo W, Mao M, Zhang X, et al: Targeting ferroptosis in
breast cancer. Biomark Res. 8:582020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fukuda A and Watanabe M: Pathogenic
potential of human SLC12A5 variants causing KCC2 dysfunction. Brain
Res. 1710:1–7. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Damanskienė E, Balnytė I, Valančiūtė A,
Alonso MM and Stakišaitis D: Different effects of valproic acid on
SLC12A2, SLC12A5 and SLC5A8 gene expression in pediatric
glioblastoma cells as an approach to personalised therapy.
Biomedicines. 10:9682022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jiang Y, Liao HL and Chen LY: A pan-cancer
analysis of SLC12A5 reveals its correlations with tumor immunity.
Dis Markers. 2021:30626062021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yuan S, He SH, Li LY, Xi S, Weng H, Zhang
JH, Wang DQ, Guo MM, Zhang H, Wang S, et al: A potassium-chloride
co-transporter promotes tumor progression and castration resistance
of prostate cancer through m(6)A reader YTHDC1. Cell Death Dis.
14:72023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Peng L, Cao Z, Wang Q, Fang L, Yan S, Xia
D, Wang J and Bi L: Screening of possible biomarkers and
therapeutic targets in kidney renal clear cell carcinoma: Evidence
from bioinformatic analysis. Front Oncol. 12:9634832022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tong Q, Qin W, Li ZH, Liu C, Wang ZC, Chu
Y and Xu XD: SLC12A5 promotes hepatocellular carcinoma growth and
ferroptosis resistance by inducing ER stress and cystine transport
changes. Cancer Med. 12:8526–8541. 2023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang L, Zhang Q, Wu P, Xiang W, Xie D,
Wang N, Deng M, Cao K, Zeng H, Xu Z, et al: SLC12A5 interacts and
enhances SOX18 activity to promote bladder urothelial carcinoma
progression via upregulating MMP7. Cancer Sci. 111:2349–2360. 2020.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Singh R, Dagar P, Pal S, Basu B and
Shankar BS: Significant alterations of the novel 15 gene signature
identified from macrophage-tumor interactions in breast cancer.
Biochim Biophys Acta Gen Subj. 1862:669–683. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Neri P, Barwick BG, Jung D, Patton JC,
Maity R, Tagoug I, Stein CK, Tilmont R, Leblay N, Ahn S, et al:
ETV4-dependent transcriptional plasticity maintains MYC expression
and results in IMiD resistance in multiple myeloma. Blood Cancer
Discov. 5:56–73. 2024. View Article : Google Scholar : PubMed/NCBI
|
22
|
Qi D, Lu M, Xu P, Yao X, Chen Y, Gan L, Li
Y, Cui Y, Tong X, Liu S, et al: Transcription factor ETV4 promotes
the development of hepatocellular carcinoma by driving hepatic
TNF-α signaling. Cancer Commun (Lond). 43:1354–1372. 2023.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Cosi I, Moccia A, Pescucci C, Munagala U,
Di Giorgio S, Sineo I, Conticello SG, Notaro R and De Angioletti M:
Identification and characterization of novel ETV4 splice variants
in prostate cancer. Sci Rep. 13:52672023. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhu T, Zheng J, Zhuo W, Pan P, Li M, Zhang
W, Zhou H, Gao Y, Li X and Liu Z: ETV4 promotes breast cancer cell
stemness by activating glycolysis and CXCR4-mediated sonic Hedgehog
signaling. Cell Death Discov. 7:1262021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu B, Zhang J, Meng X, Xie SM, Liu F,
Chen H, Yao D, Li M, Guo M, Shen H, et al: HDAC6-G3BP2 promotes
lysosomal-TSC2 and suppresses mTORC1 under ETV4 targeting-induced
low-lactate stress in non-small cell lung cancer. Oncogene.
42:1181–1195. 2023. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chandrashekar DS, Bashel B, Balasubramanya
SA, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and
Varambally S: A portal for facilitating tumor subgroup gene
expression and survival analyses. Neoplasia. 19:649–658, 2017.27.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Hu H, Miao YR, Jia LH, Yu QY, Zhang Q and
Guo AY: AnimalTFDB 3.0: A comprehensive resource for annotation and
prediction of animal transcription factors. Nucleic Acids Res.
47:D33–D38, 2019.28. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nusinow DP, Szpyt J, Ghandi M, Rose CM,
McDonald ER III, Kalocsay M, Jané-Valbuena J, Gelfand E, Schweppe
DK, Jedrychowski M, et al: Quantitative proteomics of the cancer
cell line encyclopedia. Cell. 180:387–402e16. 2020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Trayes KP and Cokenakes SEH: Breast cancer
treatment. Am Fam Physician. 104:171–178. 2021.PubMed/NCBI
|
31
|
Zhang YN, Xia KR, Li CY, Wei BL and Zhang
B: Review of breast cancer pathologigcal image processing. Biomed
Res Int. 2021:19947642021.PubMed/NCBI
|
32
|
Criscitiello C and Corti C: Breast cancer
genetics: Diagnostics and treatment. Genes (Basel). 13:15932022.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kontou G, Josephine Ng SF, Cardarelli RA,
Howden JH, Choi C, Ren Q, Rodriguez Santos MA, Bope CE, Dengler JS,
Kelley MR, et al: KCC2 is required for the survival of mature
neurons but not for their development. J Biol Chem. 296:1003642021.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Tang Y, Qing C, Wang J and Zeng Z: DNA
methylation-based diagnostic and prognostic biomarkers for
glioblastoma. Cell Transplant. 29:9636897209332412020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gao JL, Peng K, Shen MW, Hou YH, Qian XB,
Meng XW, Ji FH, Wang LN and Yang JP: Suppression of WNK1-SPAK/OSR1
attenuates bone cancer pain by regulating NKCC1 and KCC2. J Pain.
20:1416–1428. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yang X, Qu Y and Zhang J: Up-regulated
LncRNA FEZF1-AS1 promotes the progression of cervical carcinoma
cells via MiR-367-3p/SLC12A5 signal axis. Arch Med Res. 53:9–19.
2022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yang GP, He WP, Tan JF, Yang ZX, Fan RR,
Ma NF, Wang FW, Chen L, Li Y, Li Y, et al: Overexpression of
SLC12A5 is associated with tumor progression and poor survival in
ovarian carcinoma. Int J Gynecol Cancer. 29:1280–1284. 2019.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang L, Zhang Y, Yang J, Liu L, Yao B,
Tian Z and He J: The knockdown of ETV4 inhibits the papillary
thyroid cancer development by promoting ferroptosis upon SLC7A11
downregulation. DNA Cell Biol. 40:1211–1221. 2021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Yuan ZY, Dai T, Wang SS, Peng RJ, Li XH,
Qin T, Song LB and Wang X: Overexpression of ETV4 protein in
triple-negative breast cancer is associated with a higher risk of
distant metastasis. Onco Targets Ther. 7:1733–1742. 2014.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Dumortier M, Ladam F, Damour I, Vacher S,
Bièche I, Marchand N, de Launoit Y, Tulasne D and Chotteau-Lelièvre
A: ETV4 transcription factor and MMP13 metalloprotease are
interplaying actors of breast tumorigenesis. Breast Cancer Res.
20:732018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Verma S, Shankar E, Chan ER and Gupta S:
Metabolic reprogramming and predominance of solute carrier genes
during acquired enzalutamide resistance in prostate cancer. Cells.
9:25352020. View Article : Google Scholar : PubMed/NCBI
|
42
|
de Visser KE and Joyce JA: The evolving
tumor microenvironment: From cancer initiation to metastatic
outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI
|