In silico and in vitro study of FLT3 inhibitors and their application in acute myeloid leukemia
- Authors:
- Ahtziri S. Carranza‑Aranda
- Luis Felipe Jave‑Suárez
- Flor Y. Flores‑hernández
- María Del Rosario Huizar‑López
- Sara E. Herrera‑Rodríguez
- Anne Santerre
-
Affiliations: Biomedicine and Ecology Molecular Markers Laboratory, Department of Cellular and Molecular Biology, Biological and Agricultural Sciences Campus, University of Guadalajara, Zapopan, Jalisco 44600, Mexico, Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico, Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Guadalajara, Jalisco 44270, Mexico, Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco, Merida, Yucatan 97302, Mexico - Published online on: October 4, 2024 https://doi.org/10.3892/mmr.2024.13353
- Article Number: 229
-
Copyright: © Carranza‑Aranda et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Shimony S, Stahl M and Stone RM: Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 98:502–526. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I and Bray F: Global Cancer Observatory: Cancer Today. International agency for research on cancer; Lyon: 2024, Available from:. https://gco.iarc.who.int/today06–May. 2024 | |
Gokhale P, Chauhan APS, Arora A, Khandekar N, Nayarisseri A and Singh SK: FLT3 inhibitor design using molecular docking based virtual screening for acute myeloid leukemia. Bioinformation. 15:104–115. 2019. View Article : Google Scholar : PubMed/NCBI | |
Azizidoost S, Babashah S, Rahim F, Shahjahani M and Saki N: Bone marrow neoplastic niche in leukemia. Hematology. 19:232–238. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Ley T, Larson D, Miller C, Koboldt D, Welch J, Ritchey J, Young M, Lamprecht T, McLellan M, et al: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 481:506–510. 2012. View Article : Google Scholar : PubMed/NCBI | |
Santoyo-Sánchez A, Ramos-Peñafiel CO, Saavedra-González A, González-Almanza L, Martínez-Tovar A, Olarte-Carrillo I and Collazo-Jaloma J: The age and sex frequencies of patients with leukemia seen in two reference centers in the metropolitan area of Mexico City. Gac Med Mex. 152:186–189. 2016.PubMed/NCBI | |
Gilliland D and Griffin J: The roles of FLT3 in hematopoiesis and leukemia. Blood. 100:1532–1542. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lagunas-Rangel FA and Chávez-Valencia V: FLT3-ITD and its current role in acute myeloid leukaemia. Med Oncol. 34:1142017. View Article : Google Scholar : PubMed/NCBI | |
Arber D, Orazi A, Hasserjia R, Thiele J, Borowitz M, Beau M, Bloomfield C, Cazzola M and Vardiman J: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kazi J and Rönnstrand L: FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications. Physiol Rev. 99:1433–1466. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fernández S, Desplat V, Villacreces A, Guitart A, Milpied N, Rigneux A, Vigo I, Pasquet J and Dumas P: Targeting tyrosine kinases in acute myeloid leukemia: Why, who and how? Int J Mol Sci. 20:34292019. View Article : Google Scholar : PubMed/NCBI | |
Marensi V, Keeshan KR and MacEwan DJ: Pharmacological impact of FLT3 mutations on receptor activity and responsiveness to tyrosine kinase inhibitors. Biochem Pharmacol. 183:1143482021. View Article : Google Scholar : PubMed/NCBI | |
Ke YY, Singh VK, Coumar MS, Hsu YC, Wang WC, Song JS, Chen CH, Lin WH, Wu SH, Hsu JT, et al: Homology modeling if DFG-in FMS-like tyrosine kinase 3 (FLT3) and structure-based virtual screening for inhibitor identification. Sci Rep. 5:117022015. View Article : Google Scholar : PubMed/NCBI | |
Peng YH, Shiao HY, Tu CH, Liu PM, Hsu JT, Amancha PK, Wu JS, Coumar MS, Chen CH, Wang SY, et al: Protein kinase inhibitor design by targeting the Asp-Phe-Gly (DFG) motif: The role of the DFG motif in the design of epidermal growth factor receptor inhibitors. J Med Chem. 56:3889–3903. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mashkani B, Tanipour MH, Saadatmandzadeh M, Ashman LK and Griffith R: FMS-like tyrosine kinase 3 (FLT3) inhibitors: Molecular docking and experimental studies. Eur J Pharmacol. 776:156–166. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fabbro D, Cowan-Jacob SW and Moebitz H: Ten things you should know about protein kinases: IUPHAR review 14. Br J Pharmacol. 172:2675–2700. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ung PM and Schlessinger A: DFGmodel: Predicting protein kinase structures in inactive states for structure-based discovery of type-II inhibitors. ACS Chem Biol. 10:269–278. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vijayan RS, He P, Modi V, Duong-Ly KC, Ma H, Peterson JR, Dunbrack RL and Levy RM: Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. Med Chem. 58:466–479. 2015. View Article : Google Scholar : PubMed/NCBI | |
Uras I, Maurer B, Nebenfuehr S, Zujer M, Valent P and Sexl V: Therapeutic vulnerabilities in FLT3-mutant AML unmasked by Palbociclib. Int J Mol Sci. 19:39872018. View Article : Google Scholar : PubMed/NCBI | |
Rücker FG, Du L, Luck TJ, Benner A, Krzykalla J, Gathmann I, Voso MT, Amadori S, Prior TW, Brandwein JM, et al: Molecular landscape and prognostic impact of FLT3-ITD insertion site in acute myeloid leukemia: RATIFY study results. Leukemia. 36:90–99. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bohl SR, Bullinger L and Rücker FG: New targeted agents in acute myeloid leukemia: New hope on the rise. Int J Mol Sci. 20:19832019. View Article : Google Scholar : PubMed/NCBI | |
Kayser S, Schlenk RF, Londono MC, Breitenbuecher F, Wittke K, Du J, Groner S, Späth D, Krauter J, Ganser A, et al: Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood. 114:2386–2392. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sexauer A and Tasian S: Targeting FLT3 signaling in childhood acute myeloid leukemia. Front pediatr. 5:2482017. View Article : Google Scholar : PubMed/NCBI | |
Daver N, Schlenk RF, Russell NH and Levis MJ: Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 33:299–312. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mori M, Kaneko N, Ueno Y, Yamada M, Tanaka R, Saito R, Shimada I, Mori K and Kuromitsu S: Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest New Drugs. 35:556–565. 2017. View Article : Google Scholar : PubMed/NCBI | |
Loschi M, Sammut R, Chiche E and Cluzeau T: FLT3 tyrosine kinase inhibitors for the treatment of fit and unfit patients with FLT3-mutated AML: A systematic review. Int J Mol Sci. 11:58732021. View Article : Google Scholar | |
Sun J, Hu R, Han M, Tan Y, Xie M, Gao S and Hu JF: Mechanisms underlying therapeutic resistance of tyrosine kinase inhibitors in chronic myeloid leukemia. Int J Biol Sci. 1:175–181. 2024. View Article : Google Scholar | |
Barton GJ: Protein sequence alignment techniques. Acta Crystallogr D Biol. 54:1139–1146. 1998. View Article : Google Scholar : PubMed/NCBI | |
Contreras-Moreira B, Fitzjohn P and Bates P: Comparative modelling: And essential methodology for protein structure prediction in the post-genomic era. Appl Bioinformatics. 1:177–190. 2002.PubMed/NCBI | |
Saxena A, Sangwan RS and Mishra S: Fundamentals of homology modeling steps and comparison among important bioinformatics tools: An overview. Sci Int. 1:237–252. 2013. View Article : Google Scholar | |
Meng XY, Zhang HX, Mezei M and Cui M: Molecular docking: A powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 7:146–157. 2011. View Article : Google Scholar : PubMed/NCBI | |
Quentmeier H, Reinhardt J, Zaborski M and Drexler HG: FLT3 mutations in acute myeloid leukemia cell lines. Leukemia. 17:120–124. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xu B, Zhao Y, Wang X, Gong P and Ge W: MZH29 is a novel potent inhibitor that overcomes drug resistance FLT3 mutations in acute myeloid leukemia. Leukemia. 31:913–921. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kawase T, Nakazawa T, Eguchi T, Tsuzuki H, Ueno Y, Amano Y, Suzuki T, Mori M and Yoshida T: Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Oncotarget. 101:6111–6123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Akwata D, Kempen AL and Sintim HO: Identification of a selective FLT3 inhibitor with low activity against VEGFR, FGFR, PDGFR, c-KIT, and RET anti-targets. ChemMedChem. 19:e2023004422023. View Article : Google Scholar : PubMed/NCBI | |
Zorn JA, Wang Q, Fujimura E, Barros T and Kuriyan J: Crystal structure of the FLT3 kinase domain bound to the inhibitor Quizartinib (AC220). PLoS One. 10:e01211772015. View Article : Google Scholar : PubMed/NCBI | |
Todde G and Friedman R: Conformational modifications induced by internal tandem duplication on the FLT3 kinase and juxtamembrane domains. Phys Chem Chem Phys. 21:18467–18476. 2019. View Article : Google Scholar : PubMed/NCBI | |
Griffith J, Black J, Faerman C, Swenson L, Wynn M, Lu F, Lippke J and Kumkum Saxena K: The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell. 13:169–178. 2004. View Article : Google Scholar : PubMed/NCBI | |
Thomas C: Crystal structure of the FLT3 kinase bound to a small molecule inhibitor. 2018.Available from:. https://doi.org/10.2210/pdb6il3/pdb | |
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, et al: SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46:W296–W303. 2018. View Article : Google Scholar : PubMed/NCBI | |
Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ: Basic local alignment search tool. J Mol Biol. 215:403–410. 1990. View Article : Google Scholar : PubMed/NCBI | |
Mol CD, Lim KB, Sridhar V, Zou H, Chien EY, Sang BC, Nowakowski J, Kassel DB, Cronin CN and McRee DE: Structure of a c-kit product complex reveals the basis for kinase transactivation. JBC. 278:31461–31464. 2003. View Article : Google Scholar : PubMed/NCBI | |
Thompson JD, Higgins DG and Gibson TJ: CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680. 1994. View Article : Google Scholar : PubMed/NCBI | |
Reiter K, Polzer H, Krupka C, Maiser A, Vick B, Rothenberg-Thurley M, Metzeler KH, Dörfel D, Salih HR, Jung G, et al: Tyrosine kinase inhibition increases the cell surface localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid leukemia. Leukemia. 32:313–322. 2018. View Article : Google Scholar : PubMed/NCBI | |
Webb B and Sali A: Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics. 54:5.6.1–5.6.37. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E and Ferriny T: UCSF chimera visualization system for exploratory research and analysis. J Comput Chem. 25:1605–1612. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shen MY and Sali A: Statistical potential for assessment and prediction of protein structures. Protein Sci. 15:2507–2524. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharya D, Nowotny J, Cao R and Cheng J: 3Drefine: An interactive web server for efficient protein structure refinement. Nucleic Acids Res. 44:W406–W409. 2016. View Article : Google Scholar : PubMed/NCBI | |
Colvos C and Yeates T: Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 2:1511–1519. 1993. View Article : Google Scholar : PubMed/NCBI | |
Eisenberg D, Luthy R and Bowie J: VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods Enzymol. 277:396–404. 1997. View Article : Google Scholar : PubMed/NCBI | |
Laskowski R, Moss D and Thornton J: Main-chain bond length and bond angles in protein structures. J Mol Biol. 231:1049–1067. 1993. View Article : Google Scholar : PubMed/NCBI | |
Benkert P, Biasini M and Schwede T: Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 27:343–350. 2011. View Article : Google Scholar : PubMed/NCBI | |
Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, et al: MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27:293–315. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wiederstein M and Sippl M: ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 35:W407–W410. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cristobal S, Zemla A, Fischer D, Rychlewski L and Elofsson A: A study of quality measures for protein threading models. BMC Bioinformatics. 2:52001. View Article : Google Scholar : PubMed/NCBI | |
Morris G, Huey R, Lindstrom W, Sanner M, Belew R, Goodsell D and Olson A: AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 30:2785–2791. 2009. View Article : Google Scholar : PubMed/NCBI | |
Irwin J and Shoichet B: ZINC-A Free database of commercially available compounds for virtual screening. J Chem Inf Model. 45:177–182. 2005. View Article : Google Scholar : PubMed/NCBI | |
Goodsell D, Morris G and Olson A: Automated docking of flexible ligands: Applications of autodock. JMR. 9:1–5. 1996.PubMed/NCBI | |
Trott O and Olson A: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 31:455–461. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schrödinger L and DeLano W: PyMOL. 2020.Available from:. http://www.pymol.org/pymol | |
Den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, Roux AF, Smith T, Antonarakis SE and Taschner PEM: HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 37:564–569. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schiffer CA and Stone RM: Morphologic Classification and Clinical and Laboratory Correlates. Holland-Frei Cancer Medicine. Kufe DW, Pollock RE, Weichselbaum RR, et al: 6th edition. BC Decker; Hamilton, ON: 2003, Available from:. https://www.ncbi.nlm.nih.gov/books/NBK13452/ | |
Skopek R, Palusińsk M, Kaczor-Keller K, Pingwara R, Papierniak-Wyglądała A, Schenk T, Lewicki S, Zelent A and Szymański Ł: Choosing the right cell line for acute myeloid leukemia (AML) research. Int J Mol Sci. 24:53772023. View Article : Google Scholar : PubMed/NCBI | |
Sambrook J and Russell DW: Molecular Cloning: A Laboratory Manual. 1. 3rd edition. Cold Spring Harbor Laboratory Press; New York, NY: 2001 | |
Huang Y, Hu J, Lu T, Luo Y, Shi J, Wu W, Han X, Zheng W, He J, Cai Z, et al: Acute myeloid leukemia patient with FLT3-ITD and NPM1 double mutation should undergo allogeneic hematopoietic stem cell transplantation in CR1 for better prognosis. Cancer Treat Res Commun. 11:4129–4142. 2019. | |
FlowJo™ Software (Windows) [software application] Version 10.6.2. Becton-Dickinson and Company; Ashland, OR: 2023 | |
Pulte ED, Norsworthy KJ, Wang Y, Xu Q, Qosa H, Gudi R, Przepiorka D, Fu W, Okusanya OO, Goldberg KB, et al: FDA approval summary: Gilteritinib for relapsed or refractory acute myeloid leukemia with a FLT3 mutation. Clin Cancer Re. 27:3515–3521. 2021. View Article : Google Scholar : PubMed/NCBI | |
Erba HP, Montesinos P, Kim HJ, Patkowska E, Vrhovac R, Žák P, Wang PN, Mitov T, Hanyok J, Kamel YM, et al: Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Glob Health. 401:1571–1583. 2023. | |
Hu X, Cai J, Zhu J, Lang W, Zhong J, Zhong H and Chen F: Arsenic trioxide potentiates Gilteritinib-induced apoptosis in FLT3-ITD positive leukemic cells via IRE1a-JNK-mediated endoplasmic reticulum stress. Cancer Cell Int. 20:2502020. View Article : Google Scholar : PubMed/NCBI | |
James AJ, Smith CC, Litzow M, Perl AE, Altman JK, Shepard D, Kadokura T, Souda K, Patton M, Lu Z, et al: Pharmacokinetic profile of Gilteritinib: A novel FLT-3 tyrosine kinase inhibitor. Clin Pharmacokinet. 59:1273–1290. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li J, Trone D, Mendell J, O'Donnel P and Cook N: A drug-drug interaction study to assess the potential effect of acid-reducing agent, lansoprazole, on quizartinib pharmacokinetics. Cancer Chemother Pharmacol. 84:799–807. 2019. View Article : Google Scholar : PubMed/NCBI | |
Motulsky H and Christopoulos A: Fitting models to biological data using linear and nonlinear regression. Oxford Press; Oxford, UK: in press; pp. 211–316. 2004 | |
RStudio Team: RStudio: Integrated Development for R. RStudio. PBC; Boston, MA: 2020, Available from:. http://www.rstudio.com/ | |
Jilani I, Estey E, Manshuri T, Caligiuri M, Keating M, Giles F, Thomas D, Kantarjian H and Albitar M: Better detection of FLT3 internal tandem duplication using peripheral blood plasma DNA. Leukemia. 17:114–119. 2003. View Article : Google Scholar : PubMed/NCBI | |
Razumovskaya E, Masson K, Khan R, Bengtsson S and Rönnstrand L: Oncogenic Flt3 receptors display different specificity and kinetics of autophosphorylation. Exp Hematol. 37:979–989. 2009. View Article : Google Scholar : PubMed/NCBI | |
Friedman R: The molecular mechanisms behind activation of FLT3 in acute myeloid leukemia and resistance to therapy by selective inhibitors. Biochim Biophys Acta Rev Cancer. 1877:1886662022. View Article : Google Scholar : PubMed/NCBI | |
Patnaik MM: The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma. 59:2273–2286. 2018. View Article : Google Scholar : PubMed/NCBI | |
Castaño-Bonilla T, Alonso-Dominguez JM, Barragán E, Rodríguez-Veiga R, Sargas C, Gil C, Chillón C, Vidriales MB, García R, Martínez-López J, et al: Prognostic significance of FLT3-ITD length in AML patients treated with intensive regimens. Sci Rep. 11:207452021. View Article : Google Scholar : PubMed/NCBI | |
Xie T, Saleh T, Rossi P and Kalodimos CG: Conformational states dynamically populated by a kinase determine its function. Science. 370:eabc27542020. View Article : Google Scholar : PubMed/NCBI | |
Lee CC, Chuang YC, Liu YL and Yang CN: A molecular dynamics simulation study for variant drug responses due to FMS-like tyrosine kinase 3 G697R mutation. RSC Adv. 7:29871–29881. 2017. View Article : Google Scholar | |
Todde G and Friedman R: Pattern and dynamics of FLT3 duplications. J Chem Inf Model. 60:4005–4020. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Song Y and Liu D: Gilteritinib: A novel FLT3 inhibitor for acute myeloid leukemia. Biomark Res. 7:192019. View Article : Google Scholar : PubMed/NCBI | |
Iyer R, Fetterly G, Lugade A and Thanavala Y: Sorafenib: A clinical and pharmacologic review. Expert Opin Pharmacother. 11:1943–1955. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kawano T, Inokuchi J, Eto M, Murata M and Kang JH: Activators and inhibitors of protein kinase C (PKC): Their applications in clinical trials. Pharmaceutics. 13:17482021. View Article : Google Scholar : PubMed/NCBI | |
Assi R and Ravandi F: FLT3 inhibitors in acute myeloid leukemia: Choosing the best when the optimal does not exist. Am J Hematol. 93:553–563. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tarver TC, Hill JE, Rahmat L, Perl AE, Bahceci E, Mori K and Smith CC: Gilteritinib is a clinically active FLT3 inhibitor with broad activity against FLT3 kinase domain mutations. Blood Adv. 4:514–524. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou F, Ge Z and Chen B: Quizartinib (AC220) a promising option for acute myeloid leukemia. Drug Des Devel Ther. 13:1117–1125. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kennedy VE and Smith CC: FLT3 mutations in acute myeloid leukemia: Key concepts and emerging controversies. Front Oncol. 10:6128802020. View Article : Google Scholar : PubMed/NCBI | |
Pandurang S, Keretsu S and Joo S: Design of new therapeutic agents targeting FLT3 receptor tyrosine kinase using molecular docking and 3D-QSAR approach. Lett Drug Des Discov. 17:585–596. 2020. View Article : Google Scholar | |
Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, Montesinos P, Baer MR, Larson RA, Ustun C, et al: Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med. 381:1728–1740. 2019. View Article : Google Scholar : PubMed/NCBI | |
Smith CC, Levis MJ, Perl AE, Hill JE, Rosales M and Bahceci E: Molecular profile of FLT3-mutated relapsed/refractory patients with AML in the phase 3 ADMIRAL study of gilteritinib. Blood Adv. 6:2144–2155. 2022. View Article : Google Scholar : PubMed/NCBI | |
Larrosa-Garcia M and Baer MR: FLT3 inhibitors in acute myeloid leukemia: Current status and future directions. Mol Cancer Ther. 16:991–1001. 2017. View Article : Google Scholar : PubMed/NCBI | |
Egbuna C, Patrick-Iwuanyanwu KC, Onyeike EN, Khan J and Alshehri B: FMS-like tyrosine kinase-3 (FLT3) inhibitors with better binding affinity and ADMET properties than sorafenib and gilteritinib against acute myeloid leukemia: In silico studies. J Biomol Struct Dyn. 40:12248–12259. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bultum LE, Tolossa GB and Lee D: Combining empirical knowledge, in silico molecular docking and ADMET profiling to identify therapeutic phytochemicals from Brucea antidysentrica for acute myeloid leukemia. PLoS One. 17:e02700502022. View Article : Google Scholar : PubMed/NCBI | |
Mirza Z, Al-Saedi DA, Alganmi N and Karim S: Landscape of FLT3 variations associated with structural and functional impact on acute myeloid leukemia: A computational study. Int J Mol Sci. 25:34192024. View Article : Google Scholar : PubMed/NCBI | |
Ezelarab HAA, Ali TFS, Abbas SH, Hassan HA and Beshr EAM: Indole-based FLT3 inhibitors and related scaffolds as potential therapeutic agents for acute myeloid leukemia. BMC Chem. 17:732023. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM and Savidge TC: Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2:e15012402016. View Article : Google Scholar : PubMed/NCBI | |
Madushanka A, Moura Jr RT, Verma N and Kraka E: Quantum mechanical assessment of protein-ligand hydrogen bond strength patterns: Insights from semiempirical tight-binding and local vibrational mode theory. Int J Mol Med Sci. 24:63112023. View Article : Google Scholar | |
Wodicka LM, Ciceri P, Davis MI, Hunt JP, Floyd M, Salerno S, Hua XH, Ford JM, Armstrong RC, Zarrinkar PP and Treiber DK: Activation state-dependent binding of small molecule kinase inhibitors: structural insights from biochemistry. Chem Biol. 17:1241–1249. 2010. View Article : Google Scholar : PubMed/NCBI | |
Stirewalt DL, Pogosova-Agadjanyan EL, Tsuchiya K, Joaquin J and Meshinchi S: Copy-neutral loss of heterozygosity is prevalent and a late event in the pathogenesis of FLT3/ITD AML. Blood Cancer J. 4:e2082014. View Article : Google Scholar : PubMed/NCBI | |
Daver N, Venugopal S and Ravandi F: FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J. 11:1042021. View Article : Google Scholar : PubMed/NCBI | |
Kim ES: Midostaurin: First global approval. Drugs. 77:1251–1259. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang ES and Baron J: Management of toxicities associated with targeted therapies for acute myeloid leukemia: When to push through and when to stop. Hematology Am Soc Hematol Educ Program. 1:57–66. 2020. View Article : Google Scholar : PubMed/NCBI | |
Scholl S, Fleischmann M, Schnetzke U and Heidel FH: Molecular mechanisms of resistance to FLT3 inhibitors in acute myeloid leukemia: Ongoing challenges and future treatments. Cells. 9:24932020. View Article : Google Scholar : PubMed/NCBI | |
Levis M: Quizartinib for the treatment of FLT3/ITD acute myeloid leukemia. Future Oncol. 10:1571–1579. 2014. View Article : Google Scholar : PubMed/NCBI | |
Perl AE, Hosono N, Montesinos P, Podoltsev N, Martinelli G, Panoskaltsis N, Recher C, Smith CC, Levis MJ, Strickland S, et al: Clinical outcomes in patients with relapsed/refractory FLT3-mutated acute myeloid leukemia treated with gilteritinib who received prior midostaurin or sorafenib. Blood Cancer J. 12:842022. View Article : Google Scholar : PubMed/NCBI | |
Ueno Y, Mori M, Kamiyama Y, Saito R, Kaneko N, Isshiki E, Kuromitsu S and Takeuchi M: Evaluation of gilteritinib in combination with chemotherapy in preclinical models of FLT3-ITD+ acute myeloid leukemia. Oncotarget. 10:2530–2545. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qiao X, Ma J, Knight T, Su Y, Edwards H, Polin L, Li J, Kushner J, Dzinic SH, White K, et al: The combination of CUDC-907 and gilteritinib shows promising in vitro and in vivo antileukemic activity against FLT3-ITD AML. Blood Cancer J. 11:1112021. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Li Y, Chai M, Hua H, Wang R, Waxman S and Jing Y: The GSK3β/Mcl-1 axis is regulated by both FLT3-ITD and Axl and determines the apoptosis induction abilities of FLT3-ITD inhibitors. Cell Death Discov. 9:442023. View Article : Google Scholar : PubMed/NCBI | |
Darici S, Jørgensen HG, Huang X, Serafin V, Antolini L, Barozzi P, Luppi M, Forghieri F, Marmiroli S and Zavatti M: Improved efficacy of quizartinib in combination therapy with PI3K inhibition in primary FLT3-ITD AML cells. Adv Biol Regul. 89:1009742023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhang L, Tang X, Luo J, Tu Z, Jiang K, Ren X, Xu F, Chan S, Li Y, et al: GZD824 as a FLT3, FGFR1 and PDGFRα inhibitor against leukemia in vitro and in vivo. Transl Oncol. 13:100766. 2020. View Article : Google Scholar | |
Zhu R, Li L, Nguyen B, Seo J, Min Wu M, Seale T, Levis M, Duffield A, Hu Y and Small D: FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation. Signal Transduct Target Ther. 6:1862021. View Article : Google Scholar : PubMed/NCBI |