1
|
Higgs DR, Engel JD and Stamatoyannopoulos
G: Thalassaemia. Lancet. 379:373–383. 2012. View Article : Google Scholar
|
2
|
Origa R: β-Thalassemia. Genet Med.
19:609–619. 2017. View Article : Google Scholar
|
3
|
Finotti A and Gambari R: Recent trends for
novel options in experimental biological therapy of β-thalassemia.
Expert Opin Biol Ther. 14:1443–1454. 2014. View Article : Google Scholar
|
4
|
Wang F, Ling L and Yu D: MicroRNAs in
β-thalassemia. Am J Med Sci. 362:5–12. 2021. View Article : Google Scholar
|
5
|
Finotti A, Breda L, Lederer CW, Bianchi N,
Zuccato C, Kleanthous M, Rivella S and Gambari R: Recent trends in
the gene therapy of β-thalassemia. J Blood Med. 6:69–85. 2015.
|
6
|
Xu XS, Hong X and Wang G: Induction of
endogenous gamma-globin gene expression with decoy oligonucleotide
targeting Oct-1 transcription factor consensus sequence. J Hematol
Oncol. 2:152009. View Article : Google Scholar
|
7
|
Basak A and Sankaran VG: Regulation of the
fetal hemoglobin silencing factor BCL11A. Ann N Y Acad Sci.
1368:25–30. 2016. View Article : Google Scholar
|
8
|
Finotti A, Borgatti M, Bianchi N, Zuccato
C, Lampronti I and Gambari R: Orphan drugs and potential novel
approaches for therapies of β-thalassemia: Current status and
future expectations. Expert Opin Orphan Drugs. 4:299–315. 2016.
View Article : Google Scholar
|
9
|
Cappellini MD, Viprakasit V, Taher AT,
Georgiev P, Kuo KHM, Coates T, Voskaridou E, Liew HK,
Pazgal-Kobrowski I, Forni GL, et al: A phase 3 trial of
luspatercept in patients with transfusion-dependent β-thalassemia.
N Engl J Med. 382:1219–1231. 2020. View Article : Google Scholar
|
10
|
Cazzola M: Ineffective erythropoiesis and
its treatment. Blood. 139:2460–2470. 2022. View Article : Google Scholar
|
11
|
Frangoul H, Altshuler D, Cappellini MD,
Chen YS, Domm J, Eustace BK, Foell J, de la Fuente J, Grupp S,
Handgretinger R, et al: CRISPR-Cas9 gene editing for sickle cell
disease and β-thalassemia. N Engl J Med. 384:252–260. 2021.
View Article : Google Scholar
|
12
|
Fu B, Liao J, Chen S, Li W, Wang Q, Hu J,
Yang F, Hsiao S, Jiang Y, Wang L, et al: CRISPR-Cas9-mediated gene
editing of the BCL11A enhancer for pediatric β°/β°
transfusion-dependent β-thalassemia. Nat Med. 28:1573–1580. 2022.
View Article : Google Scholar
|
13
|
Hariharan P and Nadkarni A: Insight of
fetal to adult hemoglobin switch: Genetic modulators and
therapeutic targets. Blood Rev. 49:1008232021. View Article : Google Scholar
|
14
|
Bianchi N, Cosenza LC, Lampronti I,
Finotti A, Breveglieri G, Zuccato C, Fabbri E, Marzaro G, Chilin A,
De Angelis G, et al: Structural and functional insights on an
uncharacterized Aγ-globin-gene polymorphism present in four
β0-thalassemia families with high fetal hemoglobin levels. Mol
Diagn Ther. 20:161–173. 2016. View Article : Google Scholar
|
15
|
Sankaran VG and Weiss MJ: Anemia: Progress
in molecular mechanisms and therapies. Nat Med. 21:221–230. 2015.
View Article : Google Scholar
|
16
|
Sankaran VG and Orkin SH: The switch from
fetal to adult hemoglobin. Cold Spring Harb Perspect Med.
3:a0116432013. View Article : Google Scholar
|
17
|
Venkatesan V, Christopher AC, Rhiel M,
Azhagiri MKK, Babu P, Walavalkar K, Saravanan B, Andrieux G,
Rangaraj S, Srinivasan S, et al: Editing the core region in HPFH
deletions alters fetal and adult globin expression for treatment of
β-hemoglobinopathies. Mol Ther Nucleic Acids. 32:671–688. 2023.
View Article : Google Scholar
|
18
|
Bissels U, Bosio A and Wagner W: MicroRNAs
are shaping the hematopoietic landscape. Haematologica. 97:160–167.
2012. View Article : Google Scholar
|
19
|
Filipowicz W, Bhattacharyya SN and
Sonenberg N: Mechanisms of post-transcriptional regulation by
microRNAs: Are the answers in sight? Nat Rev Genet. 9:102–114.
2008. View Article : Google Scholar
|
20
|
Choong ML, Yang HH and McNiece I: MicroRNA
expression profiling during human cord blood-derived CD34 cell
erythropoiesis. Exp Hematol. 35:551–564. 2007. View Article : Google Scholar
|
21
|
Bruchova H, Yoon D, Agarwal AM, Mendell J
and Prchal JT: Regulated expression of microRNAs in normal and
polycythemia vera erythropoiesis. Exp Hematol. 35:1657–1667. 2007.
View Article : Google Scholar
|
22
|
Hattangadi SM, Wong P, Zhang L, Flygare J
and Lodish HF: From stem cell to red cell: regulation of
erythropoiesis at multiple levels by multiple proteins, RNAs, and
chromatin modifications. Blood. 118:6258–6268. 2011. View Article : Google Scholar
|
23
|
Vasilatou D, Papageorgiou S, Pappa V,
Papageorgiou E and Dervenoulas J: The role of microRNAs in normal
and malignant hematopoiesis. Eur J Haematol. 84:1–16. 2010.
View Article : Google Scholar
|
24
|
Chen SY, Wang Y, Telen MJ and Chi JT: The
genomic analysis of erythrocyte microRNA expression in sickle cell
diseases. PLoS One. 3:e23602008. View Article : Google Scholar
|
25
|
Wang H, Chen M, Xu S, Pan Y, Zhang Y,
Huang H and Xu L: Abnormal regulation of microRNAs and related
genes in pediatric β-thalassemia. J Clin Lab Anal. 35:e239452021.
View Article : Google Scholar
|
26
|
Xu X, Li Z, Liu J, Yu S and Wei Z:
MicroRNA expression profiling in endometriosis-associated
infertility and its relationship with endometrial receptivity
evaluated by ultrasound. J Xray Sci Technol. 25:523–532. 2017.
|
27
|
Lu L, Dai WZ, Zhu XC and Ma T: Analysis of
serum miRNAs in Alzheimer's disease. Am J Alzheimers Dis Other
Demen. 36:153331752110217122021. View Article : Google Scholar
|
28
|
Wang XJ, Gao J, Yu Q, Zhang M and Hu WD:
Multi-omics integration-based prioritisation of competing
endogenous RNA regulation networks in small cell lung cancer:
Molecular characteristics and drug candidates. Front Oncol.
12:9048652022. View Article : Google Scholar
|
29
|
Chen M, Lv A, Zhang S, Zheng J, Lin N, Xu
L and Huang H: Peripheral blood circular RNA circ-0008102 may serve
as a novel clinical biomarker in beta-thalassemia patients. Eur J
Pediatr. 183:1367–1379. 2024. View Article : Google Scholar
|
30
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
31
|
Himadewi P, Wang XQD, Feng F, Gore H, Liu
Y, Yu L, Kurita R, Nakamura Y, Pfeifer GP, Liu J and Zhang X: 3′HS1
CTCF binding site in human β-globin locus regulates fetal
hemoglobin expression. Elife. 10:e705572021. View Article : Google Scholar
|
32
|
Chen M, Wang X, Wang H, Zhang M, Chen L,
Chen H, Pan Y, Zhang Y, Xu L and Huang H: The clinical value of
hsa-miR-190b-5p in peripheral blood of pediatric β-thalassemia and
its regulation on BCL11A expression. PLoS One. 18:e02920312023.
View Article : Google Scholar
|
33
|
Gao J and Liu W: Advances in screening of
thalassaemia. Clin Chim Acta. 534:176–184. 2022. View Article : Google Scholar
|
34
|
Schippel N and Sharma S: Dynamics of human
hematopoietic stem and progenitor cell differentiation to the
erythroid lineage. Exp Hematol. 123:1–17. 2023. View Article : Google Scholar
|
35
|
Sankaran VG, Menne TF, Xu J, Akie TE,
Lettre G, Van Handel B, Mikkola HK, Hirschhorn JN, Cantor AB and
Orkin SH: Human fetal hemoglobin expression is regulated by the
developmental stage-specific repressor BCL11A. Science.
322:1839–1842. 2008. View Article : Google Scholar
|
36
|
Sankaran VG, Xu J, Ragoczy T, Ippolito GC,
Walkley CR, Maika SD, Fujiwara Y, Ito M, Groudine M, Bender MA, et
al: Developmental and species-divergent globin switching are driven
by BCL11A. Nature. 460:1093–1097. 2009. View Article : Google Scholar
|
37
|
Basak A, Hancarova M, Ulirsch JC, Balci
TB, Trkova M, Pelisek M, Vlckova M, Muzikova K, Cermak J, Trka J,
et al: BCL11A deletions result in fetal hemoglobin persistence and
neurodevelopmental alterations. J Clin Invest. 125:2363–2368. 2015.
View Article : Google Scholar
|
38
|
Liu N, Hargreaves VV, Zhu Q, Kurland JV,
Hong J, Kim W, Sher F, Macias-Trevino C, Rogers JM, Kurita R, et
al: Direct promoter repression by BCL11A controls the fetal to
adult hemoglobin switch. Cell. 173:430–442.e17. 2018. View Article : Google Scholar
|
39
|
Martyn GE, Wienert B, Yang L, Shah M,
Norton LJ, Burdach J, Kurita R, Nakamura Y, Pearson RCM, Funnell
APW, et al: Natural regulatory mutations elevate the fetal globin
gene via disruption of BCL11A or ZBTB7A binding. Nat Genet.
50:498–503. 2018. View Article : Google Scholar
|
40
|
Gasparello J, Fabbri E, Bianchi N,
Breveglieri G, Zuccato C, Borgatti M, Gambari R and Finotti A:
BCL11A mRNA targeting by miR-210: A possible network regulating
γ-globin gene expression. Int J Mol Sci. 18:25302017. View Article : Google Scholar
|
41
|
Basak A, Munschauer M, Lareau CA,
Montbleau KE, Ulirsch JC, Hartigan CR, Schenone M, Lian J, Wang Y,
Huang Y, et al: Control of human hemoglobin switching by
LIN28B-mediated regulation of BCL11A translation. Nat Genet.
52:138–145. 2020. View Article : Google Scholar
|
42
|
Lee YT, de Vasconcellos JF, Yuan J, Byrnes
C, Noh SJ, Meier ER, Kim KS, Rabel A, Kaushal M, Muljo SA and
Miller JL: LIN28B-mediated expression of fetal hemoglobin and
production of fetal-like erythrocytes from adult human
erythroblasts ex vivo. Blood. 122:1034–1041. 2013. View Article : Google Scholar
|
43
|
Li Y, Bai H, Zhang Z, Li W, Dong L, Wei X,
Ma Y, Zhang J, Yu J, Sun G and Wang F: The up-regulation of
miR-199b-5p in erythroid differentiation is associated with GATA-1
and NF-E2. Mol Cells. 37:213–219. 2014. View Article : Google Scholar
|
44
|
Mohammad SNNA, Iberahim S, Wan Ab Rahman
WS, Hassan MN, Edinur HA, Azlan M and Zulkafli Z: Single nucleotide
polymorphisms in XMN1-HBG2, HBS1L-MYB, and BCL11A and their
relation to high fetal hemoglobin levels that alleviate anemia.
Diagnostics (Basel). 12:13742022. View Article : Google Scholar
|
45
|
Trottier AM, Druhan LJ, Kraft IL, Lance A,
Feurstein S, Helgeson M, Segal JP, Das S, Avalos BR and Godley LA:
Heterozygous germ line CSF3R variants as risk alleles for
development of hematologic malignancies. Blood Adv. 4:5269–5284.
2020. View Article : Google Scholar
|
46
|
Oikonomidou PR and Rivella S: What can we
learn from ineffective erythropoiesis in thalassemia? Blood Rev.
32:130–143. 2018. View Article : Google Scholar
|
47
|
Phannasil P, Sukhuma C, Nauphar D, Nuamsee
K and Svasti S: Up-regulation of microRNA 101-3p during
erythropoiesis in β-thalassemia/HbE. Blood Cells Mol Dis.
103:1027812023. View Article : Google Scholar
|
48
|
Lozzio CB and Lozzio BB: Human chronic
myelogenous leukemia cell-line with positive Philadelphia
chromosome. Blood. 45:321–334. 1975. View Article : Google Scholar
|
49
|
Gambari R and Fibach E: Medicinal
chemistry of fetal hemoglobin inducers for treatment of
beta-thalassemia. Curr Med Chem. 14:199–212. 2007. View Article : Google Scholar
|
50
|
Rutherford TR, Clegg JB and Weatherall DJ:
K562 human leukaemic cells synthesise embryonic haemoglobin in
response to haemin. Nature. 280:164–165. 1979. View Article : Google Scholar
|
51
|
Bianchi N, Finotti A, Ferracin M,
Lampronti I, Zuccato C, Breveglieri G, Brognara E, Fabbri E,
Borgatti M, Negrini M and Gambari R: Increase of microRNA-210,
decrease of raptor gene expression and alteration of mammalian
target of rapamycin regulated proteins following mithramycin
treatment of human erythroid cells. PLoS One. 10:e01215672015.
View Article : Google Scholar
|
52
|
Tsang JCH, Yu Y, Burke S, Buettner F, Wang
C, Kolodziejczyk AA, Teichmann SA, Lu L and Liu P: Single-cell
transcriptomic reconstruction reveals cell cycle and multi-lineage
differentiation defects in Bcl11a-deficient hematopoietic stem
cells. Genome Biol. 16:1782015. View Article : Google Scholar
|
53
|
Jawaid K, Wahlberg K, Thein SL and Best S:
Binding patterns of BCL11A in the globin and GATA1 loci and
characterization of the BCL11A fetal hemoglobin locus. Blood Cells
Mol Dis. 45:140–146. 2010. View Article : Google Scholar
|
54
|
Sun KT, Huang YN, Palanisamy K, Chang SS,
Wang IK, Wu KH, Chen P, Peng CT and Li CY: Reciprocal regulation of
γ-globin expression by exo-miRNAs: Relevance to γ-globin silencing
in β-thalassemia major. Sci Rep. 7:2022017. View Article : Google Scholar
|
55
|
Li H, Lin R, Li H, Ou R, Wang K, Lin J and
Li C: MicroRNA-92a-3p-mediated inhibition of BCL11A upregulates
γ-globin expression and inhibits oxidative stress and apoptosis in
erythroid precursor cells. Hematology. 27:1152–1162. 2022.
View Article : Google Scholar
|
56
|
Simbula M, Manchinu MF, Mingoia M, Pala M,
Asunis I, Caria CA, Perseu L, Shah M, Crossley M, Moi P and
Ristaldi MS: miR-365-3p mediates BCL11A and SOX6 erythroid-specific
coregulation: A new player in HbF activation. Mol Ther Nucleic
Acids. 34:1020252023. View Article : Google Scholar
|
57
|
Brendel C, Guda S, Renella R, Bauer DE,
Canver MC, Kim YJ, Heeney MM, Klatt D, Fogel J, Milsom MD, et al:
Lineage-specific BCL11A knockdown circumvents toxicities and
reverses sickle phenotype. J Clin Invest. 126:3868–3878. 2016.
View Article : Google Scholar
|
58
|
Prasing W, Mekki C, Traisathit P, Pissard
S and Pornprasert S: Genotyping of BCL11A and HBS1L-MYB single
nucleotide polymorphisms in β-thalassemia/HbE and homozygous HbE
subjects with low and high levels of HbF. Walailak J Sci Technol.
15:627–636. 2017. View Article : Google Scholar
|
59
|
Nuinoon M, Makarasara W, Mushiroda T,
Setianingsih I, Wahidiyat PA, Sripichai O, Kumasaka N, Takahashi A,
Svasti S, Munkongdee T, et al: A genome-wide association identified
the common genetic variants influence disease severity in
beta0-thalassemia/hemoglobin E. Hum Genet. 127:303–314. 2010.
View Article : Google Scholar
|