1
|
Tsutsumi R, Xie C, Wei X, Zhang M, Zhang
X, Flick LM, Schwarz EM and O'Keefe RJ: PGE2 Signaling Through the
EP4 Receptor on Fibroblasts Upregulates RANKL and Stimulates
Osteolysis. J Bone Miner Res. 24:1753–1762. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Goodman SB and Gallo J: Periprosthetic
Osteolysis: Mechanisms, prevention and treatment. J Clin Med.
8:20912019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang Z, Liu N, Liu K, Zhou G, Gan J, Wang
Z, Shi T, He W, Wang L, Guo T, et al: Autophagy mediated CoCrMo
particle-induced peri-implant osteolysis by promoting osteoblast
apoptosis. Autophagy. 11:2358–2369. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Stephens M, Liao S and von der Weid PY:
Ultra-purification of Lipopolysaccharides reveals species-specific
signalling bias of TLR4: Importance in macrophage function. Sci
Rep. 11:13352021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kim KT, Eo MY, Nguyen TTH and Kim SM:
General review of titanium toxicity. Int J Implant Dent. 5:102019.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Prestat M and Thierry D: Corrosion of
titanium under simulated inflammation conditions: Clinical context
and in vitro investigations. Acta Biomater. 136:72–87. 2021.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Mombelli A, Hashim D and Cionca N: What is
the impact of titanium particles and biocorrosion on implant
survival and complications? A critical review. Clin Oral Implants
Res. 29 (Suppl 1):S37–S53. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Qu R, Chen X, Yuan Y, Wang W, Qiu C, Liu
L, Li P, Zhang Z, Vasilev K, Liu L, et al: Ghrelin fights against
titanium particle-induced inflammatory osteolysis through
activation of beta-catenin signaling pathway. Inflammation.
42:1652–1665. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Blythe EN, Weaver LC, Brown A and Dekaban
GA: β2 Integrin CD11d/CD18: From expression to an emerging role in
staged leukocyte migration. Front Immunol. 12:7754472021.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Burt RK, Loh Y, Pearce W, Beohar N, Barr
WG, Craig R, Wen Y, Rapp JA and Kessler J: Clinical applications of
blood-derived and marrow-derived stem cells for nonmalignant
diseases. JAMA. 299:925–936. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Palomino-Morales RJ, Rojas-Villarraga A,
Gonzalez CI, Ramirez G, Anaya JM and Martin J: STAT4 but not
TRAF1/C5 variants influence the risk of developing rheumatoid
arthritis and systemic lupus erythematosus in Colombians. Genes
Immun. 9:379–382. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Schittenhelm L, Hilkens CM and Morrison
VL: β2 integrins as regulators of dendritic cell, monocyte, and
macrophage function. Front Immunol. 8:18662017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Han C, Jin J, Xu S, Liu H, Li N and Cao X:
Integrin CD11b negatively regulates TLR-triggered inflammatory
responses by activating Syk and promoting degradation of MyD88 and
TRIF via Cbl-b. Nat. Immunol. 11:734–742. 2010.
|
14
|
Lv L, Xie Y, Li K, Hu T, Lu X, Cao Y and
Zheng X: Unveiling the mechanism of surface
hydrophilicity-modulated macrophage polarization. Adv Healthc
Mater. 7:e18006752018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Alépée N, Bahinski A, Daneshian M, De
Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J,
Hogberg H, et al: State-of-the-art of 3D cultures
(organs-on-a-chip) in safety testing and pathophysiology. ALTEX.
31:441–477. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yee NK and Hamerman JA: β(2) integrins
inhibit TLR responses by regulating NF-κB pathway and p38 MAPK
activation. Eur J Immunol. 43:779–792. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Vallés G, González-Melendi P,
González-Carrasco JL, Saldaña L, Sánchez-Sabaté E, Munuera L and
Vilaboa N: Differential inflammatory macrophage response to rutile
and titanium particles. Biomaterials. 27:5199–5211. 2006.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Pettersson M, Kelk P, Belibasakis GN,
Bylund D, Molin Thorén M and Johansson A: Titanium ions form
particles that activate and execute interleukin-1β release from
lipopolysaccharide-primed macrophages. J Periodontal Res. 52:21–32.
2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Pajarinen J, Kouri VP, Jämsen E, Li TF,
Mandelin J and Konttinen YT: The response of macrophages to
titanium particles is determined by macrophage polarization. Acta
Biomater. 9:9229–9240. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee SS, Sharma AR, Choi BS, Jung JS, Chang
JD, Park S, Salvati EA, Purdue EP, Song DK and Nam JS: The effect
of TNFα secreted from macrophages activated by titanium particles
on osteogenic activity regulated by WNT/BMP signaling in
osteoprogenitor cells. Biomaterials. 33:4251–4263. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bi Y, VanDeMotter RR, Ragab AA, Goldberg
VM, Anderson JM and Greenfield EM: Titanium particles stimulate
bone resorption by inducing differentiation of murine osteoclasts.
J Bone Joint Surg Am. 83:501–508. 2001. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dias Corpa Tardelli J, Lima da Costa
Valente M, Theodoro de Oliveira T and Cândido dos Reis A: Influence
of chemical composition on cell viability on titanium surfaces: A
systematic review. J Prosthet Dent. 125:421–425. 2021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yao S, Feng X, Li W, Wang LN and Wang X:
Regulation of RAW 264.7 macrophages behavior on anodic TiO2
nanotubular arrays. Front Mater Sci. 11:318–327. 2017. View Article : Google Scholar
|
25
|
Messous R, Henriques B, Bousbaa H, Silva
FS, Teughels W and Souza JCM: Cytotoxic effects of submicron- and
nano-scale titanium debris released from dental implants: An
integrative review. Clin Oral Investig. 25:1627–1640. 2021.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Weller S, Bonnet M, Delagreverie H, Israel
L, Chrabieh M, Maródi L, Rodriguez-Gallego C, Garty BZ, Roifman C,
Issekutz AC, et al: IgM+IgD+CD27+ B cells are markedly reduced in
IRAK-4-, MyD88-, and TIRAP- but not UNC-93B-deficient patients.
Blood. 120:4992–5001. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Podolnikova NP, Kushchayeva YS, Wu Y,
Faust J and Ugarova TP: The Role of Integrins αMβ2 (Mac-1,
CD11b/CD18) and αDβ2 (CD11d/CD18) in Macrophage Fusion. Am J
Pathol. 186:2105–2116. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Schymeinsky J, Mócsai A and Walzog B:
Neutrophil activation via beta2 integrins (CD11/CD18): Molecular
mechanisms and clinical implications. Thromb Haemost. 98:262–273.
2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ebnet K, Suzuki A, Ohno S and Vestweber D:
Junctional adhesion molecules (JAMs): More molecules with dual
functions? J Cell Sci. 117((Pt 1)): 19–29. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ross GD and Větvička V: CR3 (CD11b, CD18):
A phagocyte and NK cell membrane receptor with multiple ligand
specificities and functions. Clin Exp Immunol. 92:181–184. 1993.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Lukácsi S, Gerecsei T, Balázs K, Francz B,
Szabó B, Erdei A and Bajtay Z: The differential role of CR3
(CD11b/CD18) and CR4 (CD11c/CD18) in the adherence, migration and
podosome formation of human macrophages and dendritic cells under
inflammatory conditions. PLoS One. 15:e02324322020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kirby AC, Raynes JG and Kaye PM: CD11b
regulates recruitment of alveolar macrophages but not pulmonary
dendritic cells after pneumococcal challenge. J Infect Dis.
193:205–213. 2006. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Sándor N, Lukácsi S, Ungai-Salánki R,
Orgován N, Szabó B, Horváth R, Erdei A and Bajtay Z: CD11c/CD18
dominates adhesion of human monocytes, macrophages and dendritic
cells over CD11b/CD18. PLoS One. 11:e01631202016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Duan T, Du Y, Xing C, Wang HY and Wang RF:
Toll-Like receptor signaling and its role in cell-mediated
immunity. Front. Immunol. 13:8127742022.PubMed/NCBI
|
35
|
Alhamdan F, Bayarsaikhan G and Yuki K:
Toll-like receptors and integrins crosstalk. Front Immunol.
15:14037642024. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bai Y, Qian C, Qian L, Ma F, Hou J, Chen
Y, Wang Q and Cao X: Integrin CD11b Negatively Regulates
TLR9-Triggered dendritic cell cross-priming by upregulating
microRNA-146a. J Immunol. 188:5293–5302. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Saitoh SI, Abe F, Kanno A, Tanimura N,
Mori Saitoh Y, Fukui R, Shibata T, Sato K, Ichinohe T, Hayashi M,
et al: TLR7 mediated viral recognition results in focal type I
interferon secretion by dendritic cells. Nat Commun. 8:15922017.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Yi YS, Kim HG, Kim JH, Yang WS, Kim E,
Jeong D, Park JG, Aziz N, Kim S, Parameswaran N and Cho JY:
Syk-MyD88 axis is a critical determinant of inflammatory-response
in activated macrophages. Front Immunol. 12:7673662021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Avbelj M, Hafner-Bratkovič I, Lainšček D,
Manček-Keber M, Peternelj TT, Panter G, Treon SP, Gole B, Potočnik
U and Jerala R: Cleavage-Mediated Regulation of Myd88 signaling by
inflammasome-activated caspase-1. Front Immunol. 12:7902582022.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang G and Ghosh S: Negative regulation
of toll-like receptor-mediated signaling by Tollip. J Biol Chem.
277:7059–7065. 2002. View Article : Google Scholar : PubMed/NCBI
|
41
|
Facchin BM, dos Reis GO, Vieira GN, Mohr
ETB, da Rosa JS, Kretzer IF, Demarchi IG and Dalmarco EM:
Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: A
systematic review and meta-analysis. Inflamm Res. 71:741–758. 2022.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Tian C, Liu X, Chang Y, Wang R, Yang M and
Liu M: Rutin prevents inflammation induced by lipopolysaccharide in
RAW 264.7 cells via conquering the TLR4-MyD88-TRAF6-NF-κB
signalling pathway. J Pharm Pharmacol. 73:110–117. 2021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Xu R, Ma L, Chen T and Wang J:
Sophorolipid Suppresses LPS-Induced Inflammation in RAW264.7 Cells
through the NF-κB signaling pathway. Molecules. 27:50372022.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Barbour SE, Wong C, Rabah D, Kapur A and
Carter AD: Mature macrophage cell lines exhibit variable responses
to LPS. Mol Immunol. 35:977–987. 1998. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sun H, Zhi K, Hu L and Fan Z: The
Activation and Regulation of beta2 integrins in phagocytes and
phagocytosis. Front Immunol. 12:6336392021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yakubenko VP, Belevych N, Mishchuk D,
Schurin A, Lam SC and Ugarova TP: The role of integrin alpha D
beta2 (CD11d/CD18) in monocyte/macrophage migration. Exp Cell Res.
314:2569–2578. 2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Chuluyan HE and Issekutz AC: VLA-4
integrin can mediate CD11/CD18-independent transendothelial
migration of human monocytes. J Clin Invest. 92:2768–2777. 1993.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Gruber EJ and Leifer CA: Molecular
regulation of TLR signaling in health and disease:
Mechano-regulation of macrophages and TLR signaling. Innate Immun.
26:15–25. 2020. View Article : Google Scholar : PubMed/NCBI
|