Research progress on the correlation between corneal neovascularization and lymphangiogenesis (Review)
- Authors:
- Zhaochen Zhang
- Rongxuan Zhao
- Xuhui Wu
- Yunkun Ma
- Yuxi He
-
Affiliations: Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China, Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130041, P.R. China - Published online on: December 3, 2024 https://doi.org/10.3892/mmr.2024.13412
- Article Number: 47
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhong W, Montana M, Santosa SM, Isjwara ID, Huang YH, Han KY, O'Neil C, Wang A, Cortina MS, de la Cruz J, et al: Angiogenesis and lymphangiogenesis in corneal transplantation-A review. Surv Ophthalmol. 63:453–479. 2018. View Article : Google Scholar : PubMed/NCBI | |
Narimatsu A, Hattori T, Koike N, Tajima K, Nakagawa H, Yamakawa N, Usui Y, Kumakura S, Matsumoto T and Goto H: Corneal lymphangiogenesis ameliorates corneal inflammation and edema in late stage of bacterial keratitis. Sci Rep. 9:29842019. View Article : Google Scholar : PubMed/NCBI | |
Chang LK, Garcia-Cardeña G, Farnebo F, Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J and Kaipainen A: Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA. 101:11658–11663. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dietrich T, Bock F, Yuen D, Hos D, Bachmann BO, Zahn G, Wiegand S, Chen L and Cursiefen C: Cutting edge: Lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol. 184:535–539. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meshko B, Volatier TLA, Hadrian K, Deng S, Hou Y, Kluth MA, Ganss C, Frank MH, Frank NY, Ksander B, et al: ABCB5+ limbal epithelial stem cells inhibit developmental but promote inflammatory (Lymph) angiogenesis while preventing corneal inflammation. Cells. 12:17312023. View Article : Google Scholar : PubMed/NCBI | |
Dana MR: Angiogenesis and lymphangiogenesis-implications for corneal immunity. Semin Ophthalmol. 21:19–22. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cursiefen C, Chen L, Dana MR and Streilein JW: Corneal lymphangiogenesis: Evidence, mechanisms, and implications for corneal transplant immunology. Cornea. 22:273–281. 2003. View Article : Google Scholar : PubMed/NCBI | |
Di Zazzo A, Gaudenzi D, Yin J, Coassin M, Fernandes M, Dana R and Bonini S: Corneal angiogenic privilege and its failure. Exp Eye Res. 204:1084572021. View Article : Google Scholar : PubMed/NCBI | |
Benayoun Y, Casse G, Forte R, Dallaudière B, Adenis JP and Robert PY: Corneal neovascularization: epidemiological, physiopathological, and clinical features. J Fr Ophtalmol. 36:627–639. 2013.(In French). View Article : Google Scholar : PubMed/NCBI | |
Hadrian K and Cursiefen C: The role of lymphatic vessels in corneal fluid homeostasis and wound healing. J Ophthalmic Inflamm Infect. 14:42024. View Article : Google Scholar : PubMed/NCBI | |
Kimyon Comert G, Basaran D, Ergin Akkoz H, Celik B, Sinaci S, Turkmen O, Karalok A, Kandemir O and Turan T: Blood Vessel Invasion in Endometrial Cancer Is One of the Mechanisms of Spread to the Cervix. Pathol Oncol Res. 25:1431–1436. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jackson DG, Prevo R, Clasper S and Banerji S: LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol. 22:317–321. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shi W, Liu J, Li M, Gao H and Wang T: Expression of MMP, HPSE, and FAP in stroma promoted corneal neovascularization induced by different etiological factors. Curr Eye Res. 35:967–977. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cogan DG: Vascularization of the cornea; ats experimental induction by small lesions and a new theory of its pathogenesis. Arch Ophthal. 41:406–416. 1949. View Article : Google Scholar : PubMed/NCBI | |
Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D'Amore PA, Dana MR, Wiegand SJ and Streilein JW: VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 113:1040–1050. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gothard TW, Hardten DR, Lane SS, Doughman DJ, Krachmer JH and Holland EJ: Clinical findings in Brown-McLean syndrome. Am J Ophthalmol. 115:729–737. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J and D'Amato RJ: A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci. 37:1625–1632. 1996.PubMed/NCBI | |
Simons M, Gordon E and Claesson-Welsh L: Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 17:611–625. 2016. View Article : Google Scholar : PubMed/NCBI | |
Viallard C and Larrivée B: Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis. 20:409–426. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nicholas MP and Mysore N: Corneal neovascularization. Exp Eye Res. 202:1083632021. View Article : Google Scholar : PubMed/NCBI | |
Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, Maiz A, Jalali S, Djalilian AR and Holland EJ: Current and emerging therapies for corneal neovascularization. Ocul Surf. 16:398–414. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG and Oliver G: An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21:1505–1513. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Yuan L, Mak J, Pardanaud L, Caunt M, Kasman I, Larrivée B, Del Toro R, Suchting S, Medvinsky A, et al: Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol. 188:115–130. 2010. View Article : Google Scholar : PubMed/NCBI | |
Abdelfattah NS, Amgad M, Zayed AA, Hussein H and Abd El-Baky N: Molecular underpinnings of corneal angiogenesis: Advances over the past decade. Int J Ophthalmol. 9:768–779. 2016.PubMed/NCBI | |
Mäkinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, et al: Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20:4762–4773. 2001. View Article : Google Scholar : PubMed/NCBI | |
Goyal S, Chauhan SK, El Annan J, Nallasamy N, Zhang Q and Dana R: Evidence of corneal lymphangiogenesis in dry eye disease: A potential link to adaptive immunity? Arch Ophthalmol. 128:819–824. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chauhan SK, Jin Y, Goyal S, Lee HS, Fuchsluger TA, Lee HK and Dana R: A novel pro-lymphangiogenic function for Th17/IL-17. Blood. 118:4630–4634. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee SJ, Im ST, Wu J, Cho CS, Jo DH, Chen Y, Dana R, Kim JH and Lee SM: Corneal lymphangiogenesis in dry eye disease is regulated by substance P/neurokinin-1 receptor system through controlling expression of vascular endothelial growth factor receptor 3. Ocul Surf. 22:72–79. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wilting J, Neeff H and Christ B: Embryonic lymphangiogenesis. Cell Tissue Res. 297:1–11. 1999. View Article : Google Scholar : PubMed/NCBI | |
Lee HK, Lee SM and Lee DI: Corneal Lymphangiogenesis: Current pathophysiological understandings and its functional role in ocular surface disease. Int J Mol Sci. 22:116282021. View Article : Google Scholar : PubMed/NCBI | |
Sáinz-Jaspeado M and Claesson-Welsh L: Cytokines regulating lymphangiogenesis. Curr Opin Immunol. 53:58–63. 2018. View Article : Google Scholar : PubMed/NCBI | |
Patnam M, Dommaraju SR, Masood F, Herbst P, Chang JH, Hu WY, Rosenblatt MI and Azar DT: Lymphangiogenesis guidance mechanisms and therapeutic implications in pathological states of the cornea. Cells. 12:3192023. View Article : Google Scholar : PubMed/NCBI | |
Cao R, Ji H, Feng N, Zhang Y, Yang X, Andersson P, Sun Y, Tritsaris K, Hansen AJ, Dissing S and Cao Y: Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci USA. 109:15894–15899. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cursiefen C, Schlötzer-Schrehardt U, Küchle M, Sorokin L, Breiteneder-Geleff S, Alitalo K and Jackson D: Lymphatic vessels in vascularized human corneas: Immunohistochemical investigation using LYVE-1 and podoplanin. Invest Ophthalmol Vis Sci. 43:2127–2135. 2002.PubMed/NCBI | |
Cursiefen C, Maruyama K, Jackson DG, Streilein JW and Kruse FE: Time course of angiogenesis and lymphangiogenesis after brief corneal inflammation. Cornea. 25:443–447. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shi W, Ming C, Liu J, Wang T and Gao H: Features of corneal neovascularization and lymphangiogenesis induced by different etiological factors in mice. Graefes Arch Clin Exp Ophthalmol. 249:55–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
Giacomini C, Ferrari G, Bignami F and Rama P: Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: An overview of two common animal models of corneal neovascularization. Exp Eye Res. 121:1–4. 2014. View Article : Google Scholar : PubMed/NCBI | |
Song S, Cheng J, Yu BJ, Zhou L, Xu HF and Yang LL: LRG1 promotes corneal angiogenesis and lymphangiogenesis in a corneal alkali burn mouse model. Int J Ophthalmol. 13:365–373. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ammassam Veettil R, Li W, Pflugfelder SC and Koch DD: A Mouse Model for Corneal Neovascularization by Alkali Burn. J Vis Exp. 2023. View Article : Google Scholar : PubMed/NCBI | |
Park JH, Joo CK and Chung SK: Comparative study of tacrolimus and bevacizumab on corneal neovascularization in rabbits. Cornea. 34:449–455. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maier AK, Reichhart N, Gonnermann J, Kociok N, Riechardt AI, Gundlach E, Strauß O and Joussen AM: Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse. PLoS One. 16:e02451432021. View Article : Google Scholar : PubMed/NCBI | |
Ung L and Chodosh J: Foundational concepts in the biology of bacterial keratitis. Exp Eye Res. 209:1086472021. View Article : Google Scholar : PubMed/NCBI | |
Koganti R, Yadavalli T, Naqvi RA, Shukla D and Naqvi AR: Pathobiology and treatment of viral keratitis. Exp Eye Res. 205:1084832021. View Article : Google Scholar : PubMed/NCBI | |
Gurung HR, Carr MM, Bryant K, Chucair-Elliott AJ and Carr DJ: Fibroblast growth factor-2 drives and maintains progressive corneal neovascularization following HSV-1 infection. Mucosal Immunol. 11:172–185. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Zhang X, Luo W, Ge H, Sun D and Liu P: Notch signaling pathway is involved in bFGF-induced corneal lymphangiogenesis and hemangiogenesis. J Ophthalmol. 2019:96139232019.PubMed/NCBI | |
Li S, Li L, Zhou Q, Gao H, Liu M and Shi W: Blood vessels and lymphatic vessels in the cornea and iris after penetrating keratoplasty. Cornea. 38:742–747. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hos D, Bukowiecki A, Horstmann J, Bock F, Bucher F, Heindl LM, Siebelmann S, Steven P, Dana R, Eming SA and Cursiefen C: Transient ingrowth of lymphatic vessels into the physiologically avascular cornea regulates corneal edema and transparency. Sci Rep. 7:72272017. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Guo K, Santosa SM, Montana M, Yamakawa M, Hallak JA, Han KY, Doh SJ, Rosenblatt MI, Chang JH and Azar DT: Application of corneal injury models in dual fluorescent reporter transgenic mice to understand the roles of the cornea and limbus in angiogenic and lymphangiogenic privilege. Sci Rep. 9:123312019. View Article : Google Scholar : PubMed/NCBI | |
Goyal S, Chauhan SK and Dana R: Blockade of prolymphangiogenic vascular endothelial growth factor C in dry eye disease. Arch Ophthalmol. 130:84–89. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wuest TR and Carr DJ: VEGF-A expression by HSV-1-infected cells drives corneal lymphangiogenesis. J Exp Med. 207:101–115. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wuest T, Zheng M, Efstathiou S, Halford WP and Carr DJ: The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent neovascularization. PLoS Pathog. 7:e10022782011. View Article : Google Scholar : PubMed/NCBI | |
Thangamathesvaran L, Kong J, Bressler SB, Singh M, Wenick AS, Scott AW, Arévalo JF and Bressler NM: Severe intraocular inflammation following intravitreal faricimab. JAMA Ophthalmol. 142:365–370. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jaggi D, Nagamany T, Wolf S, Zinkernagel MS and Heussen FM: Aflibercept for central retinal vein occlusions: Long-term outcomes of a ‘Treat-and-Extend’ regimen. BMJ Open Ophthalmol. 9:e0016592024. View Article : Google Scholar : PubMed/NCBI | |
Limon DU, Kaplan FB, Saygın I, Önder Tokuç E, Kutlutürk Karagöz I, Kanar HS, Sevik MO, Yayla U, Çelik E, Sönmez A, et al: One-Year functional and morphological prognosis after intravitreal injection treatments according to different morphological patterns of diabetic macular edema in real-life: MARMASIA Study Group Report No.13. Semin Ophthalmol. 39:460–467. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang XM, Li QP, Wang ZH and Zhang MN: Comparison of ranibizumab and conbercept treatment in type 1 prethreshold retinopathy of prematurity in zone II. BMC Pediatr. 24:5562024. View Article : Google Scholar : PubMed/NCBI | |
Hong SH and Kim HD: Central retinal artery occlusion after intravitreal brolucizumab injection for treatment-naïve neovascular age-related macular degeneration; a case report. BMC Ophthalmol. 24:2002024. View Article : Google Scholar : PubMed/NCBI | |
HARMONi-A Study Investigators, . Fang W, Zhao Y, Luo Y, Yang R, Huang Y, He Z, Zhao H, Li M, Li K, et al: Ivonescimab Plus Chemotherapy in Non-Small Cell Lung Cancer With EGFR Variant: A Randomized Clinical Trial. JAMA. 332:561–570. 2024. View Article : Google Scholar : PubMed/NCBI | |
Cho W, Mittal SK, Elbasiony E and Chauhan SK: Ocular surface mast cells promote inflammatory lymphangiogenesis. Microvasc Res. 141:1043202022. View Article : Google Scholar : PubMed/NCBI | |
Ferrari G, Bignami F, Giacomini C, Franchini S and Rama P: Safety and efficacy of topical infliximab in a mouse model of ocular surface scarring. Invest Ophthalmol Vis Sci. 54:1680–1688. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Lu Y, Proulx ST, Guo R, Yao Z, Schwarz EM, Boyce BF and Xing L: Increased lymphangiogenesis in joints of mice with inflammatory arthritis. Arthritis Res Ther. 9:R1182007. View Article : Google Scholar : PubMed/NCBI | |
Ji RC: Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cell Mol Life Sci. 69:897–914. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ji RC: Lymphatic endothelial cells, inflammatory lymphangiogenesis, and prospective players. Curr Med Chem. 14:2359–2368. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hos D, Bucher F, Regenfuss B, Dreisow ML, Bock F, Heindl LM, Eming SA and Cursiefen C: IL-10 indirectly regulates corneal lymphangiogenesis and resolution of inflammation via macrophages. Am J Pathol. 186:159–171. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nakao S, Kuwano T, Tsutsumi-Miyahara C, Ueda S, Kimura YN, Hamano S, Sonoda KH, Saijo Y, Nukiwa T, Strieter RM, et al: Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest. 115:2979–2991. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lu P, Li L, Liu G, Zhang X and Mukaida N: Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist. Invest Ophthalmol Vis Sci. 50:4761–4768. 2009. View Article : Google Scholar : PubMed/NCBI | |
Doz E, Noulin N, Boichot E, Guénon I, Fick L, Le Bert M, Lagente V, Ryffel B, Schnyder B, Quesniaux VF and Couillin I: Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J Immunol. 180:1169–1178. 2008. View Article : Google Scholar : PubMed/NCBI | |
Reuer T, Schneider AC, Cakir B, Bühler AD, Walz JM, Lapp T, Lange C, Agostini H, Schlunck G, Cursiefen C, et al: Semaphorin 3F Modulates Corneal Lymphangiogenesis and Promotes Corneal Graft Survival. Invest Ophthalmol Vis Sci. 59:5277–5284. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Abraham S, McKenzie JAG, Jeffs N, Swire M, Tripathi VB, Luhmann UFO, Lange CAK, Zhai Z, Arthur HM, et al: LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature. 499:306–311. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhu L, Fang J, Ge Z and Li X: LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1α activation. J Exp Clin Cancer Res. 35:292016. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Wang S, He Y, Shen S, Yao B, Xu D, Liu X and Zhang Y: The role of bone morphogenetic protein 4 in corneal injury repair. Exp Eye Res. 212:1087692021. View Article : Google Scholar : PubMed/NCBI | |
Rezzola S, Di Somma M, Corsini M, Leali D, Ravelli C, Polli VAB, Grillo E, Presta M and Mitola S: VEGFR2 activation mediates the pro-angiogenic activity of BMP4. Angiogenesis. 22:521–533. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shokirova H, Inomata T, Saitoh T, Zhu J, Fujio K, Okumura Y, Yanagawa A, Fujimoto K, Sung J, Eguchi A, et al: Topical administration of the kappa opioid receptor agonist nalfurafine suppresses corneal neovascularization and inflammation. Sci Rep. 11:86472021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Shu Y, Yin L, Xie T, Zou J, Zhan P, Wang Y, Wei T, Zhu L, Yang X, et al: Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation. Exp Eye Res. 207:1085682021. View Article : Google Scholar : PubMed/NCBI | |
Song HB, Park SY, Ko JH, Park JW, Yoon CH, Kim DH, Kim JH, Kim MK, Lee RH, Prockop DJ and Oh JY: Mesenchymal Stromal Cells Inhibit Inflammatory Lymphangiogenesis in the Cornea by Suppressing Macrophage in a TSG-6-Dependent Manner. Mol Ther. 26:162–172. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Jiao X, Hu J, Xue W, Zhou Z and Wang W: WTAP promotes macrophage recruitment and increases VEGF secretion via N6-methyladenosine modification in corneal neovascularization. Biochim Biophys Acta Mol Basis Dis. 1869:1667082023. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Schönberg A, Bock F and Cursiefen C: Posttransplant VEGFR1R2 Trap Eye Drops Inhibit Corneal (Lymph)angiogenesis and Improve Corneal Allograft Survival in Eyes at High Risk of Rejection. Transl Vis Sci Technol. 11:62022. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Schönberg A, Hamdorf M, Georgiev T, Cursiefen C and Bock F: Preincubation of donor tissue with a VEGF cytokine trap promotes subsequent high-risk corneal transplant survival. Br J Ophthalmol. 106:1617–1626. 2022. View Article : Google Scholar : PubMed/NCBI | |
Le VNH, Hos D, Hou Y, Witt M, Barkovskiy M, Bock F and Cursiefen C: VEGF TrapR1R2 Suspended in the Semifluorinated Alkane F6H8 Inhibits Inflammatory Corneal Hem- and Lymphangiogenesis. Transl Vis Sci Technol. 9:152020. View Article : Google Scholar : PubMed/NCBI | |
Salabarria AC, Koch M, Schönberg A, Zinser E, Hos D, Hamdorf M, Imhof T, Braun G, Cursiefen C and Bock F: Topical VEGF-C/D Inhibition Prevents Lymphatic Vessel Ingrowth into Cornea but Does Not Improve Corneal Graft Survival. J Clin Med. 9:12702020. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Sengupta S, Lee BJ, Cho H, Kim J, Choi HG, Dash U, Kim JH, Kim ND, Kim JH and Sim T: Identification of a Unique Resorcylic Acid Lactone Derivative That Targets Both Lymphangiogenesis and Angiogenesis. J Med Chem. 62:9141–9160. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cho YK, Shin EY, Uehara H and Ambati B: The Effect of 0.5% Timolol Maleate on Corneal(Lymph)Angiogenesis in a Murine Suture Model. J Ocul Pharmacol Ther. 34:403–409. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cho YK, Shin EY, Uehara H and Ambati B: Antiangiogenesis Effect of Albendazole on the Cornea. J Ocul Pharmacol Ther. 35:254–261. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ellenberg D, Azar DT, Hallak JA, Tobaigy F, Han KY, Jain S, Zhou Z and Chang JH: Novel aspects of corneal angiogenic and lymphangiogenic privilege. Prog Retin Eye Res. 29:208–248. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tzeng HE, Chang AC, Tsai CH, Wang SW and Tang CH: Basic fibroblast growth factor promotes VEGF-C-dependent lymphangiogenesis via inhibition of miR-381 in human chondrosarcoma cells. Oncotarget. 7:38566–38578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shin JW, Min M, Larrieu-Lahargue F, Canron X, Kunstfeld R, Nguyen L, Henderson JE, Bikfalvi A, Detmar M and Hong YK: Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: A role for FGF signaling in lymphangiogenesis. Mol Biol Cell. 17:576–584. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hellström M, Phng LK and Gerhardt H: VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr. 1:133–136. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kofler NM, Shawber CJ, Kangsamaksin T, Reed HO, Galatioto J and Kitajewski J: Notch signaling in developmental and tumor angiogenesis. Genes Cancer. 2:1106–1116. 2011. View Article : Google Scholar : PubMed/NCBI | |
Food and Drug Administration, . Drug Approvals and Databases. https://www.fda.gov/drugs/development-approval-process-drugs/drug-approvals-and-databasesOctober 20–2024 | |
Imamura K, Yoshida W, Seshima F, Aoki H, Yamashita K, Kitamura Y, Murakami T, Ambiru M, Bizenjima T, Katayama A, et al: Periodontal regenerative therapy using recombinant human fibroblast growth factor (rhFGF)-2 in combination with carbonate apatite granules or rhFGF-2 alone: 12-month randomized controlled trial. Clin Oral Investig. 28:5742024. View Article : Google Scholar : PubMed/NCBI | |
Clark AJ, Mullooly N, Safitri D, Harris M, de Vries T, MaassenVanDenBrink A, Poyner DR, Gianni D, Wigglesworth M and Ladds G: CGRP, adrenomedullin and adrenomedullin 2 display endogenous GPCR agonist bias in primary human cardiovascular cells. Commun Biol. 4:7762021. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Zidan A, Pang K, Musayeva A, Kang Q and Yin J: Promotion of corneal angiogenesis by sensory neuron-derived calcitonin gene-related peptide. Exp Eye Res. 220:1091252022. View Article : Google Scholar : PubMed/NCBI | |
Majima M, Ito Y, Hosono K and Amano H: CGRP/CGRP Receptor Antibodies: Potential adverse effects due to blockade of neovascularization? Trends Pharmacol Sci. 40:11–21. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li S, Shi S, Xia F, Ha Y, Luisi J, Gupta PK, Merkley KH, Motamedi M, Liu H and Zhang W: CXCR3 deletion aggravates corneal neovascularization in a corneal alkali-burn model. Exp Eye Res. 225:1092652022. View Article : Google Scholar : PubMed/NCBI | |
Nibbs RJ and Graham GJ: Immune regulation by atypical chemokine receptors. Nat Rev Immunol. 13:815–829. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chevigné A, Janji B, Meyrath M, Reynders N, D'Uonnolo G, Uchański T, Xiao M, Berchem G, Ollert M, Kwon YJ, et al: CXCL10 Is an Agonist of the CC Family Chemokine Scavenger Receptor ACKR2/D6. Cancers (Basel). 13:10542021. View Article : Google Scholar : PubMed/NCBI | |
Muramatsu M, Osawa T, Miyamura Y, Nakagawa S, Tanaka T, Kodama T, Aburatani H, Sakai J, Ryeom S and Minami T: Loss of Down syndrome critical region-1 leads to cholesterol metabolic dysfunction that exaggerates hypercholesterolemia in ApoE-null background. J Biol Chem. 296:1006972021. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Dong X, Zhao H, Feng J, Chen B, Zhou Y, Peng Y, Zhang L, Zhou Q, Li Y, et al: Myeloid-derived suppressor cells improve corneal graft survival through suppressing angiogenesis and lymphangiogenesis. Am J Transplant. 21:552–566. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Dong X, Liu Y, Kang H, Guan L, Huang Y, Zhu X, Tian J, Chen B, Jiang B and He Y: Rapamycin antagonizes angiogenesis and lymphangiogenesis through myeloid-derived suppressor cells in corneal transplantation. Am J Transplant. 23:1359–1374. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wei C, Mi Y, Sun L, Luo J, Zhang J, Gao Y, Yu X, Ge H and Liu P: Cannabidiol alleviates suture-induced corneal pathological angiogenesis and inflammation by inducing myeloid-derived suppressor cells. Int Immunopharmacol. 137:1124292024. View Article : Google Scholar : PubMed/NCBI | |
Kang H, Feng J, Peng Y, Liu Y, Yang Y, Wu Y, Huang J, Jie Y, Chen B and He Y: Human mesenchymal stem cells derived from adipose tissue showed a more robust effect than those from the umbilical cord in promoting corneal graft survival by suppressing lymphangiogenesis. Stem Cell Res Ther. 14:3282023. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Gong D, Yan D, Wang H, Witman N, Lu Y, Fu W and Fu Y: Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Mol Ther. 31:2454–2471. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Inomata T, Fujimoto K, Uchida K, Fujio K, Nagino K, Miura M, Negishi N, Okumura Y, Akasaki Y, et al: Ex Vivo-Induced bone marrow-derived myeloid suppressor cells prevent corneal allograft rejection in mice. Invest Ophthalmol Vis Sci. 62:32021. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Reinach PS, Ge C, Li Y, Wu B, Xie Q, Tong L and Chen W: Corneal collagen cross-linking pretreatment mitigates injury-induced inflammation, hemangiogenesis and lymphangiogenesis in vivo. Transl Vis Sci Technol. 10:112021. View Article : Google Scholar : PubMed/NCBI | |
Hou Y, Le VNH, Tóth G, Siebelmann S, Horstmann J, Gabriel T, Bock F and Cursiefen C: UV light crosslinking regresses mature corneal blood and lymphatic vessels and promotes subsequent high-risk corneal transplant survival. Am J Transplant. 18:2873–2884. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dietrich-Ntoukas T, Bock F, Onderka J, Hos D, Bachmann BO, Zahn G and Cursiefen C: Selective, Temporary Postoperative Inhibition of Lymphangiogenesis by Integrin α5β1 blockade improves allograft survival in a murine model of high-risk corneal transplantation. J Clin Med. 13:44182024. View Article : Google Scholar : PubMed/NCBI | |
Farooq AV and Shukla D: Herpes simplex epithelial and stromal keratitis: An epidemiologic update. Surv Ophthalmol. 57:448–462. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park PJ, Chang M, Garg N, Zhu J, Chang JH and Shukla D: Corneal lymphangiogenesis in herpetic stromal keratitis. Surv Ophthalmol. 60:60–71. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Schuette F, Christofi M, Forrester JV, Graham GJ and Kuffova L: The atypical chemokine receptor-2 fine-tunes the immune response in herpes stromal keratitis. Front Immunol. 13:10542602022. View Article : Google Scholar : PubMed/NCBI | |
Anderson C, Zhou Q and Wang S: An alkali-burn injury model of corneal neovascularization in the mouse. J Vis Exp. 86:511592014. | |
Oh S, Seo M, Choi JS, Joo CK and Lee SK: MiR-199a/b-5p Inhibits Lymphangiogenesis by Targeting Discoidin Domain Receptor 1 in Corneal Injury. Mol Cells. 41:93–102. 2018.PubMed/NCBI | |
Li Y, Chen A, Hong A, Xiong S, Chen X and Xie Q: Shark Cartilage-Derived Anti-Angiogenic Peptide Inhibits Corneal Neovascularization. Bioengineering (Basel). 11:6932024. View Article : Google Scholar : PubMed/NCBI | |
Adams RH and Alitalo K: Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol. 8:464–478. 2007. View Article : Google Scholar : PubMed/NCBI |