Influence of lactate in resistance to anti‑PD‑1/PD‑L1 therapy: Mechanisms and clinical applications (Review)
- Authors:
- Yi Zeng
- Yu Huang
- Qiaoyun Tan
- Ling Peng
- Jian Wang
- Fan Tong
- Xiaorong Dong
-
Affiliations: Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China - Published online on: December 6, 2024 https://doi.org/10.3892/mmr.2024.13413
- Article Number: 48
-
Copyright: © Zeng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al: Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, Castro G Jr, Srimuninnimit V, Laktionov KK, Bondarenko I, et al: Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet. 393:1819–1830. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lorusso D, Xiang Y, Hasegawa K, Scambia G, Leiva M, Ramos-Elias P, Acevedo A, Sukhin V, Cloven N, Pereira de Santana Gomes AJ, et al: Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): Overall survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 404:1321–1332. 2024. View Article : Google Scholar : PubMed/NCBI | |
Choueiri TK, Tomczak P, Park SH, Venugopal B, Ferguson T, Symeonides SN, Hajek J, Chang YH, Lee JL, Sarwar N, et al: Overall survival with adjuvant pembrolizumab in renal-cell carcinoma. N Engl J Med. 390:1359–1371. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu K: Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI | |
Vesely MD, Zhang T and Chen L: Resistance mechanisms to anti-PD cancer immunotherapy. Annu Rev Immunol. 40:45–74. 2022. View Article : Google Scholar : PubMed/NCBI | |
Peng DH, Rodriguez BL, Diao L, Chen L, Wang J, Byers LA, Wei Y, Chapman HA, Yamauchi M, Behrens C, et al: Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion. Nature Commun. 11:45202020. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Peng Z, Qin M, Liu Y, Wang J, Zhang C, Lin J, Dong T, Wang L, Li S, et al: Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol Cell. 81:1216–1230.e9. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Zou L, Liao H, Luo J, Yang T, Wu J, Chen W, Wu K, Cen S, Lv D, et al: Abrogation of HnRNP L enhances anti-PD-1 therapy efficacy via diminishing PD-L1 and promoting CD8+ T cell-mediated ferroptosis in castration-resistant prostate cancer. Acta Pharm Sin B. 12:692–707. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Lim SO, Yan M, Hsu JL, Yao J, Wei Y, Chang SS, Yamaguchi H, Lee HH, Ke B, et al: TYRO3 induces anti-PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. J Clin Invest. 131:e1394342021. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Lin J, Shao Y, Zheng H, Yang Y, Li S, Fan X, Hong H, Mao Z, Xue P, et al: Targeting PLCG2 suppresses tumor progression, orchestrates the tumor immune microenvironment and potentiates immune checkpoint blockade therapy for colorectal cancer. Int J Biol Sci. 20:5548–5575. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dai Y, Guo Z, Leng D, Jiao G, Chen K, Fu M, Liu Y, Shen Q, Wang Q, Zhu L and Zhao Q: Metal-coordinated NIR-II nanoadjuvants with nanobody conjugation for potentiating immunotherapy by tumor metabolism reprogramming. Adv Sci (Weinh). 11:e24048862024. View Article : Google Scholar : PubMed/NCBI | |
Pavlova Natalya N and Thompson Craig B: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nisar H, Sanchidrián González PM, Brauny M, Labonté FM, Schmitz C, Roggan MD, Konda B and Hellweg CE: Hypoxia changes energy metabolism and growth rate in non-small cell lung cancer cells. Cancers (Basel). 15:24722023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wenes M, Romero P, Huang SCC, Fendt SM and Ho PC: Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat Rev Clin Oncol. 16:425–441. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhai Z, Duan J, Wang X, Zhong J, Wu L, Li A, Cao M, Wu Y, Shi H, et al: Lactate: The mediator of metabolism and immunosuppression. Front Endocrinol (Lausanne). 13:9014952022. View Article : Google Scholar : PubMed/NCBI | |
Shergold AL, Millar R and Nibbs RJB: Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacol Res. 145:1042582019. View Article : Google Scholar : PubMed/NCBI | |
Cao Z, Xu D, Harding J, Chen W, Liu X, Wang Z, Wang L, Qi T, Chen S, Guo X, et al: Lactate oxidase nanocapsules boost T cell immunity and efficacy of cancer immunotherapy. Sci Transl Med. 15:eadd27122023. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Galan-Cobo A, Guijarro I, Dang M, Molkentine D, Poteete A, Zhang F, Wang Q, Wang J, Parra E, et al: MCT4-dependent lactate secretion suppresses antitumor immunity in LKB1-deficient lung adenocarcinoma. Cancer Cell. 41:1363–1380.e7. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, et al: PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 545:495–499. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marasco M, Berteotti A, Weyershaeuser J, Thorausch N, Sikorska J, Krausze J, Brandt HJ, Kirkpatrick J, Rios P, Schamel WW, et al: Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci Adv. 6:eaay44582020. View Article : Google Scholar : PubMed/NCBI | |
Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M and Saito T: Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 209:1201–1217. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela V, Casanova-Acebes M, Dhainaut M, et al: β-Catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 9:1124–1141. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Mudianto T, Ma X, Riley R and Uppaluri R: Targeting EZH2 enhances antigen presentation, antitumor Immunity, and circumvents anti-PD-1 resistance in head and neck cancer. Clin Cancer Res. 26:290–300. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, Lund T, Tanić M, Reading JL, Joshi K, et al: Neoantigen-directed immune escape in lung cancer evolution. Nature. 567:479–485. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kwon M, An M, Klempner SJ, Lee H, Kim KM, Sa JK, Cho HJ, Hong JY, Lee T, Min YW, et al: Determinants of response and intrinsic resistance to PD-1 blockade in microsatellite instability-high gastric cancer. Cancer Discov. 11:2168–2185. 2021. View Article : Google Scholar : PubMed/NCBI | |
Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco SE, Gay L, et al: STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8:822–835. 2018. View Article : Google Scholar : PubMed/NCBI | |
Messaoudene M, Pidgeon R, Richard C, Ponce M, Diop K, Benlaifaoui M, Nolin-Lapalme A, Cauchois F, Malo J, Belkaid W, et al: A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. 12:1070–1087. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lei Q, Wang D, Sun K, Wang L and Zhang Y: Resistance mechanisms of anti-PD1/PDL1 therapy in solid tumors. Front Cell Dev Biol. 8:6722020. View Article : Google Scholar : PubMed/NCBI | |
Murciano-Goroff YR, Warner AB and Wolchok JD: The future of cancer immunotherapy: Microenvironment-targeting combinations. Cell Res. 30:507–519. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zou W and Green DR: Beggars banquet: Metabolism in the tumor immune microenvironment and cancer therapy. Cell Metab. 35:1101–1113. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang ZH, Peng WB, Zhang P, Yang XP and Zhou Q: Lactate in the tumour microenvironment: From immune modulation to therapy. EBioMedicine. 73:1036272021. View Article : Google Scholar : PubMed/NCBI | |
Jedlička M, Feglarová T, Janstová L, Hortová-Kohoutková M and Frič J: Lactate from the tumor microenvironment-A key obstacle in NK cell-based immunotherapies. Front Immunol. 13:9320552022. View Article : Google Scholar : PubMed/NCBI | |
Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, Togashi Y, Kamada T, Irie T, Okumura G, Kono H, et al: Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 40:201–218.e9. 2022. View Article : Google Scholar : PubMed/NCBI | |
Warburg O, Wind F and Negelein E: Über den stoffwechsel von tumoren im körper. Klin Wochenschr. 5:829–832. 1926. View Article : Google Scholar | |
Paul S, Ghosh S and Kumar S: Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 86:1216–1230. 2022. View Article : Google Scholar : PubMed/NCBI | |
Luo B, Song L, Chen L, Cai Y, Zhang M and Wang S: Ganoderic acid D attenuates gemcitabine resistance of triple-negative breast cancer cells by inhibiting glycolysis via HIF-1alpha destabilization. Phytomedicine. 129:1556752024. View Article : Google Scholar : PubMed/NCBI | |
Mossmann D, Park S and Hall MN: mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer. 18:744–757. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Wan Y, Ma J, Gong J, Zhong Z, Cui Y, Zhang H, Da Y, Ma J, Li C, et al: Epigenetic silencing of LDHB promotes hepatocellular carcinoma by remodeling the tumor microenvironment. Cancer Immunol Immunother. 73:1272024. View Article : Google Scholar : PubMed/NCBI | |
Hong SM, Lee YK, Park I, Kwon SM, Min S and Yoon G: Lactic acidosis caused by repressed lactate dehydrogenase subunit B expression down-regulates mitochondrial oxidative phosphorylation via the pyruvate dehydrogenase (PDH)-PDH kinase axis. J Biol Chem. 294:7810–7820. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yue J, Xu J, Yin Y, Shu Y, Li Y, Li T, Zou Z, Wang Z, Li F, Zhang M, et al: Targeting the PDK/PDH axis to reverse metabolic abnormalities by structure-based virtual screening with in vitro and in vivo experiments. Int J Biol Macromol. 262:1299702024. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang Y, Zhang B, Lin X, Fu X, An Y, Zou Y, Wang JX, Wang Z and Yu T: Lactate metabolism in human health and disease. Signal Transduct Target Ther. 7:3052022. View Article : Google Scholar : PubMed/NCBI | |
Tian LR, Lin MZ, Zhong HH, Cai YJ, Li B, Xiao ZC and Shuai XT: Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Biomater Sci. 10:3892–3900. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tasdogan A, Faubert B, Ramesh V, Ubellacker JM, Shen B, Solmonson A, Murphy MM, Gu Z, Gu W, Martin M, et al: Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature. 577:115–120. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Zhan, Yanxiang Guo J, et al: Glucose feeds the TCA cycle via circulating lactate. Nature. 551:115–118. 2017. View Article : Google Scholar : PubMed/NCBI | |
Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al: Lactate metabolism in human lung tumors. Cell. 171:358–371.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pérez-Escuredo J, Dadhich RK, Dhup S, Cacace A, Van Hée VF, De Saedeleer CJ, Sboarina M, Rodriguez F, Fontenille MJ, Brisson L, et al: Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle. 15:72–83. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, et al: Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 39:1109862022. View Article : Google Scholar : PubMed/NCBI | |
Ippolito L, Comito G, Parri M, Iozzo M, Duatti A, Virgilio F, Lorito N, Bacci M, Pardella E, Sandrini G, et al: Lactate rewires lipid metabolism and sustains a metabolic-epigenetic axis in prostate cancer. Cancer Res. 82:1267–1282. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xie D, Zhu S and Bai L: Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. Sci China Life Sci. 59:1290–1296. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Liu P, Lu X, Li J, Qi D, Zang L, Lin J, Liu Y, Zhai S, Fu D, et al: Pan-cancer analysis implicates novel insights of lactate metabolism into immunotherapy response prediction and survival prognostication. J Exp Clin Cancer Res. 43:1252024. View Article : Google Scholar : PubMed/NCBI | |
Marciscano AE and Anandasabapathy N: The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol. 52:1014812021. View Article : Google Scholar : PubMed/NCBI | |
Christofides A, Strauss L, Yeo A, Cao C, Charest A and Boussiotis VA: The complex role of tumor-infiltrating macrophages. Nat Immunol. 23:1148–1156. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mu X, Shi W, Xu Y, Xu C, Zhao T, Geng B, Yang J, Pan J, Hu S, Zhang C, et al: Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle. 17:428–438. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y, Zhu Q, Zhang WB, Pan YB, Jin J, et al: Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics. 11:3839–3852. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Zuo H, Xiong H, Kolar MJ, Chu Q, Saghatelian A, Siegwart DJ and Wan Y: Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc Natl Acad Sci USA. 114:580–585. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Wei H, Wang H, Wang Z, Li J, Ou Y, Xiao X, Wang W, Chang A, Sun W, et al: Zeb1-induced metabolic reprogramming of glycolysis is essential for macrophage polarization in breast cancer. Cell Death Dis. 13:2062022. View Article : Google Scholar : PubMed/NCBI | |
Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Song L, Zhang F, Wu S, Zhu G, Zhang P, Chen S, Du J, Wang B, Cai Y, et al: Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma. Cancer Commun (Lond). 44:1231–1260. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Muri J, Fitzgerald G, Gorski T, Gianni-Barrera R, Masschelein E, D'Hulst G, Gilardoni P, Turiel G, Fan Z, et al: Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab. 31:1136–1153.e7. 2020. View Article : Google Scholar : PubMed/NCBI | |
Morrissey SM, Zhang F, Ding C, Montoya-Durango DE, Hu X, Yang C, Wang Z, Yuan F, Fox M, Zhang HG, et al: Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab. 33:2040–2058.e10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tang H, Liang Y, Anders RA, Taube JM, Qiu X, Mulgaonkar A, Liu X, Harrington SM, Guo J, Xin Y, et al: PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. J Clin Invest. 128:580–588. 2018. View Article : Google Scholar : PubMed/NCBI | |
Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D and Sozzani S: Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol. 20:432–447. 2023. View Article : Google Scholar : PubMed/NCBI | |
See P, Dutertre CA, Chen J, Gunther P, McGovern N, Irac SE, Gunawan M, Beyer M, Händler K, Duan K, et al: Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 356:eaag30092017. View Article : Google Scholar : PubMed/NCBI | |
Rigamonti A, Villar J and Segura E: Monocyte differentiation within tissues: A renewed outlook. Trends Immunol. 44:999–1013. 2023. View Article : Google Scholar : PubMed/NCBI | |
Peng X, He Y, Huang J, Tao Y and Liu S: Metabolism of dendritic cells in tumor microenvironment: for immunotherapy. Front Immunol. 12:6134922021. View Article : Google Scholar : PubMed/NCBI | |
Monti M, Vescovi R, Consoli F, Farina D, Moratto D, Berruti A, Specchia C and Vermi W: Plasmacytoid dendritic cell impairment in metastatic melanoma by lactic acidosis. Cancers (Basel). 12:20852020. View Article : Google Scholar : PubMed/NCBI | |
Brown TP, Bhattacharjee P, Ramachandran S, Sivaprakasam S, Ristic B, Sikder MOF and Ganapathy V: The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene. 39:3292–3304. 2020. View Article : Google Scholar : PubMed/NCBI | |
Plebanek MP, Xue Y, Nguyen YV, DeVito NC, Wang X, Holtzhausen A, Beasley GM, Theivanthiran B and Hanks BA: A lactate-SREBP2 signaling axis drives tolerogenic dendritic cell maturation and promotes cancer progression. Sci Immunol. 9:eadi41912024. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Xu F, Hu J, Zhang H, Cui L, Lu W, He W, Wang X, Li M, Zhang H, et al: Modulation of lactate-lysosome axis in dendritic cells by clotrimazole potentiates antitumor immunity. J Immunother Cancer. 9:e0021552021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang F, Peng D, Zhang D, Liu L, Wei J, Yuan J, Zhao L, Jiang H, Zhang T, et al: Activation and antitumor immunity of CD8+ T cells are supported by the glucose transporter GLUT10 and disrupted by lactic acid. Sci Transl Med. 16:eadk73992024. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Gao J, Ma M, Wang K, Liu F, Yang F, Yang F, Zou X, Cheng Z and Wu D: The potential role of CMC1 as an immunometabolic checkpoint in T cell immunity. Oncoimmunology. 13:23449052024. View Article : Google Scholar : PubMed/NCBI | |
Sasaki K, Nishina S, Yamauchi A, Fukuda K, Hara Y, Yamamura M, Egashira K and Hino K: Nanoparticle-mediated delivery of 2-deoxy-D-glucose induces antitumor immunity and cytotoxicity in liver tumors in mice. Cell Mol Gastroenterol Hepatol. 11:739–762. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cappellesso F, Orban MP, Shirgaonkar N, Berardi E, Serneels J, Neveu MA, Di Molfetta D, Piccapane F, Caroppo R, Debellis L, et al: Targeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancer. Nat Cancer. 3:1464–1483. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Liu W, Tang Z, Ji X, Zhou Y, Song S, Tian M, Tao C, Huang R, Zhu G, et al: Monocarboxylate transporter 4 inhibition potentiates hepatocellular carcinoma immunotherapy through enhancing T cell infiltration and immune attack. Hepatology. 77:109–123. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Liang Z, Cheng S, Huang L, Li W, Zhou C, Zheng X, Li S, Zeng Z and Kang L: Mutant KRAS drives immune evasion by sensitizing cytotoxic T-cells to activation-induced cell death in colorectal cancer. Adv Sci (Weinh). 10:e22037572023. View Article : Google Scholar : PubMed/NCBI | |
Kaymak I, Luda KM, Duimstra LR, Ma EH, Longo J, Dahabieh MS, Faubert B, Oswald BM, Watson MJ, Kitchen-Goosen SM, et al: Carbon source availability drives nutrient utilization in CD8(+) T cells. Cell Metab. 34:1298–1311.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
Notarangelo G, Spinelli JB, Perez EM, Baker GJ, Kurmi K, Elia I, Stopka SA, Baquer G, Lin JR, Golby AJ, et al: Oncometabolite d-2HG alters T cell metabolism to impair CD8(+) T cell function. Science. 377:1519–1529. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Grzywacz B, Sukovich D, McCullar V, Cao Q, Lee AB, Blazar BR, Cornfield DN, Miller JS and Verneris MR: The unexpected effect of cyclosporin A on CD56+CD16- and CD56+CD16+ natural killer cell subpopulations. Blood. 110:1530–1539. 2007. View Article : Google Scholar : PubMed/NCBI | |
Miao L, Lu C, Zhang B, Li H, Zhao X, Chen H, Liu Y and Cui X: Advances in metabolic reprogramming of NK cells in the tumor microenvironment on the impact of NK therapy. J Transl Med. 22:2292024. View Article : Google Scholar : PubMed/NCBI | |
Ge W, Meng L, Cao S, Hou C, Zhu X, Huang D, Li Q, Peng Y and Jiang K: The SIX1/LDHA axis promotes lactate accumulation and leads to NK cell dysfunction in pancreatic cancer. J Immunol Res. 2023:68916362023. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Huang X, Xu X, Wei K, Zheng Y, Gong K and Li W: Decreased LDHB expression in breast tumor cells causes NK cell activation and promotes tumor progression. Cancer Biol Med. 21:513–540. 2024.PubMed/NCBI | |
Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et al: LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24:657–671. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abdolahi S, Ghazvinian Z, Muhammadnejad S, Ahmadvand M, Aghdaei HA, Ebrahimi-Barough S, Ai J, Zali MR, Verdi J and Baghaei K: Adaptive NK cell therapy modulated by anti-PD-1 antibody in gastric cancer model. Front Pharmacol. 12:7330752021. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Tao W, Guo X, Jing C, Zhang M, Wang Z, Kong F, Suo N, Jiang S and Wang H: Construction of a lactate-related prognostic signature for predicting prognosis, tumor microenvironment, and immune response in kidney renal clear cell carcinoma. Front Immunol. 13:8189842022. View Article : Google Scholar : PubMed/NCBI | |
Wagner NB, Forschner A, Leiter U, Garbe C and Eigentler TK: S100B and LDH as early prognostic markers for response and overall survival in melanoma patients treated with anti-PD-1 or combined anti-PD-1 plus anti-CTLA-4 antibodies. Br J Cancer. 119:339–346. 2018. View Article : Google Scholar : PubMed/NCBI | |
Heuser C, Renner K, Kreutz M and Gattinoni L: Targeting lactate metabolism for cancer immunotherapy-a matter of precision. Semin Cancer Biol. 88:32–45. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Yang J, Wei H, Wang J, Huang S, Yang S, Guo Y, Li B and Shuai X: Construction of pH-sensitive nanovaccines encapsulating tumor cell lysates and immune adjuvants for breast cancer therapy. Small. 19:e23014202023. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Zhou X, Yang X, Li W, Li S, Hu Z, Ling C, Shi R, Liu J, Chen G, et al: Dual blockade of lactate/GPR81 and PD-1/PD-L1 pathways enhances the anti-tumor effects of metformin. Biomolecules. 11:13732021. View Article : Google Scholar : PubMed/NCBI | |
Ji P, Jin XK, Deng XC, Zhang SM, Liang JL, Li QR, Chen WH and Zhang XZ: Metabolic regulation-mediated reversion of the tumor immunosuppressive microenvironment for potentiating cooperative metabolic therapy and immunotherapy. Nano Lett. 24:4691–701. 2024. View Article : Google Scholar : PubMed/NCBI | |
Renner K, Bruss C, Schnell A, Koehl G, Becker HM, Fante M, Menevse AN, Kauer N, Blazquez R, Hacker L, et al: Restricting glycolysis preserves T Cell effector functions and augments checkpoint therapy. Cell Rep. 29:135–150.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Xu R, Chen X, Lu Y, Zheng J, Lin Y, Zheng J, Lin Y, Lin P, Zhao X and Cui L: Metabolic gatekeepers: Harnessing tumor-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumor microenvironment. Cell Death Dis. 15:7752024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zhao Y, Song H, Li Y, Liu Z, Ye Z, Zhao J, Wu Y, Tang J and Yao M: Metabolic reprogramming in tumor immune microenvironment: Impact on immune cell function and therapeutic implications. Cancer Lett. 597:2170762024. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhao J, Tian C, Dong L, Kang Z, Wang J, Zhao S, Li M and Tong X: Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: Effects on short-chain fatty acids. Nutr Metab (Lond). 21:492024. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yang Y, Shao F, Meng Y, Guo D, He J and Lu Z: Acetate reprogrammes tumour metabolism and promotes PD-L1 expression and immune evasion by upregulating c-Myc. Nat Metab. 6:914–932. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bose S, Ramesh V and Locasale JW: Acetate metabolism in physiology, cancer, and beyond. Trends Cell Biol. 29:695–703. 2019. View Article : Google Scholar : PubMed/NCBI | |
Burgdorf S, Porubsky S, Marx A and Popovic ZV: Cancer acidity and hypertonicity contribute to dysfunction of tumor-associated dendritic cells: Potential impact on antigen cross-presentation machinery. Cancers (Basel). 12:24032020. View Article : Google Scholar : PubMed/NCBI | |
Shang S, Wang MZ, Xing Z, He N and Li S: Lactate regulators contribute to tumor microenvironment and predict prognosis in lung adenocarcinoma. Front Immunol. 13:10249252022. View Article : Google Scholar : PubMed/NCBI |