1
|
Singh JA, Yu S, Chen L and Cleveland JD:
Rates of total joint replacement in the United States: Future
projections to 2020–2040 using the national inpatient sample. J
Rheumatol. 46:1134–1140. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Apostu D, Lucaciu O, Berce C, Lucaciu D
and Cosma D: Current methods of preventing aseptic loosening and
improving osseointegration of titanium implants in cementless total
hip arthroplasty: A review. J Int Med Res. 46:2104–2119. 2018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bozic KJ, Kamath AF, Ong K, Lau E, Kurtz
S, Chan V, Vail TP, Rubash H and Berry DJ: Comparative epidemiology
of revision arthroplasty: Failed THA poses greater clinical and
economic burdens than failed TKA. Clin Orthop Relat Res.
473:2131–2138. 2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kurtz SM, Lau EC, Ong KL, Adler EM,
Kolisek FR and Manley MT: Which clinical and patient factors
influence the national economic burden of hospital readmissions
after total joint arthroplasty? Clin Orthop Relat Res.
475:2926–2937. 2017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Di Minno A, Gelzo M, Stornaiuolo M,
Ruoppolo M and Castaldo G: The evolving landscape of untargeted
metabolomics. Nutr Metab Cardiovasc Dis. 31:1645–1652. 2021.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Schrimpe-Rutledge AC, Codreanu SG, Sherrod
SD and McLean JA: Untargeted metabolomics strategies-challenges and
emerging directions. J Am Soc Mass Spectrom. 27:1897–1905. 2016.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Cui L, Lu H and Lee YH: Challenges and
emergent solutions for LC-MS/MS based untargeted metabolomics in
diseases. Mass Spectrom Rev. 37:772–792. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Muthubharathi BC, Gowripriya T and
Balamurugan K: Metabolomics: Small molecules that matter more. Mol
Omics. 17:210–229. 2021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Liu D, Ma L, Zheng J, Zhang Z, Zhang N,
Han Z, Wang X, Zhao J, Lv S and Cui H: Isopsoralen improves
glucocorticoid-induced osteoporosis by regulating purine metabolism
and promoting cGMP/PKG pathway-mediated osteoblast differentiation.
Curr Drug Metab. 25:288–297. 2024. View Article : Google Scholar : PubMed/NCBI
|
10
|
Misra BB, Jayapalan S, Richards AK,
Helderman RCM and Rendina-Ruedy E: Untargeted metabolomics in
primary murine bone marrow stromal cells reveals distinct profile
throughout osteoblast differentiation. Metabolomics. 17:862021.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Amirhosseini M, Andersson G, Aspenberg P
and Fahlgren A: Mechanical instability and titanium particles
induce similar transcriptomic changes in a rat model for
periprosthetic osteolysis and aseptic loosening. Bone Rep. 7:17–25.
2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pioletti DP, Leoni L, Genini D, Takei H,
Du P and Corbeil J: Gene expression analysis of osteoblastic cells
contacted by orthopedic implant particles. J Biomed Mater Res.
61:408–420. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Abele JT, Swami VG, Russell G, Masson EC
and Flemming JP: The accuracy of single photon emission computed
tomography/computed tomography arthrography in evaluating aseptic
loosening of hip and knee prostheses. J Arthroplasty. 30:1647–1651.
2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hou Y, He D, Ye L, Wang G, Zheng Q and Hao
H: An improved detection and identification strategy for untargeted
metabolomics based on UPLC-MS. J Pharm Biomed Anal. 191:1135312020.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang Y and Huang J: Untargeted metabolomic
analysis of metabolites related to body dysmorphic disorder (BDD).
Funct Integr Genomics. 23:702023. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang Z, Yin Y, Chen T, You J, Zhang W,
Zhao Y, Ren Y, Wang H, Chen X and Zuo X: Investigating the impact
of human blood metabolites on the Sepsis development and
progression: A study utilizing two-sample Mendelian randomization.
Front Med (Lausanne). 10:13103912023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yamamoto N, Suzuki T, Kobayashi M, Dohra
H, Sasaki Y, Hirai H, Yokoyama K, Kawagishi H and Yano K: A-WINGS:
An integrated genome database for Pleurocybella porrigens (Angel's
wing oyster mushroom, Sugihiratake). BMC Res Notes. 7:8662014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Blum T, Briesemeister S and Kohlbacher O:
MultiLoc2: Integrating phylogeny and gene ontology terms improves
subcellular protein localization prediction. BMC Bioinformatics.
10:2742009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Schmittgen TD and Livak KJ: Analyzing
real-time PCR data by the comparative C(T) method. Nat Protoc.
3:1101–1108. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chopra N and Knollmann BC: Triadin
regulates cardiac muscle couplon structure and microdomain Ca(2+)
signalling: A path towards ventricular arrhythmias. Cardiovasc Res.
98:187–191. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xue S, Shao Q, Zhu LB, Jiang YF, Wang C,
Xue B, Lu HM, Sang WL and Ma JZ: LDC000067 suppresses RANKL-induced
osteoclastogenesis in vitro and prevents LPS-induced osteolysis in
vivo. Int Immunopharmacol. 75:1058262019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Gillani M and Pollastri G: Protein
subcellular localization prediction tools. Comput Struct Biotechnol
J. 23:1796–1807. 2024. View Article : Google Scholar : PubMed/NCBI
|
23
|
Abu-Amer Y, Darwech I and Clohisy JC:
Aseptic loosening of total joint replacements: Mechanisms
underlying osteolysis and potential therapies. Arthritis Res Ther.
9 (Suppl 1):S62007. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Lee JD, Kim HY, Kang K, Jeong HG, Song MK,
Tae IH, Lee SH, Kim HR, Lee K, Chae S, et al: Integration of
transcriptomics, proteomics and metabolomics identifies biomarkers
for pulmonary injury by polyhexamethylene guanidine phosphate
(PHMG-p), a humidifier disinfectant, in rats. Arch Toxicol.
94:887–909. 2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Koks G, Pfaff AL, Bubb VJ, Quinn JP and
Koks S: At the dawn of the transcriptomic medicine. Exp Biol Med
(Maywood). 246:286–292. 2021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Aslam B, Basit M, Nisar MA, Khurshid M and
Rasool MH: Proteomics: Technologies and their applications. J
Chromatogr Sci. 55:182–196. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Newgard CB: Metabolomics and metabolic
diseases: Where do we stand? Cell Metab. 25:43–56. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S
and Zhang A: Small molecule metabolites: Discovery of biomarkers
and therapeutic targets. Signal Transduct Target Ther. 8:1322023.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Wishart DS: Metabolomics for investigating
physiological and pathophysiological processes. Physiol Rev.
99:1819–1875. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Paquette AG, MacDonald J, Bammler T, Day
DB, Loftus CT, Buth E, Mason WA, Bush NR, Lewinn KZ, Marsit C, et
al: Placental transcriptomic signatures of spontaneous preterm
birth. Am J Obstet Gynecol. 228:73.e1–73.e18. 2023. View Article : Google Scholar : PubMed/NCBI
|
31
|
Elson GC, Graber P, Losberger C, Herren S,
Gretener D, Menoud LN, Wells TN, Kosco-Vilbois MH and Gauchat JF:
Cytokine-like factor-1, a novel soluble protein, shares homology
with members of the cytokine type I receptor family. J Immunol.
161:1371–1379. 1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tsuritani K, Takeda J, Sakagami J, Ishii
A, Eriksson T, Hara T, Ishibashi H, Koshihara Y, Yamada K and
Yoneda Y: Cytokine receptor-like factor 1 is highly expressed in
damaged human knee osteoarthritic cartilage and involved in
osteoarthritis downstream of TGF-beta. Calcif Tissue Int. 86:47–57.
2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xu H, Ding C, Guo C, Xiang S, Wang Y, Luo
B and Xiang H: Suppression of CRLF1 promotes the chondrogenic
differentiation of bone marrow-derived mesenchymal stem and
protects cartilage tissue from damage in osteoarthritis via
activation of miR-320. Mol Med. 27:1162021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li P, Li D, Lu Y, Pan S, Cheng F, Li S,
Zhang X, Huo J, Liu D and Liu Z: GSTT1/GSTM1 deficiency aggravated
cisplatin-induced acute kidney injury via ROS-triggered
ferroptosis. Front Immunol. 15:14572302024. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ye J, Mu YY, Wang J and He XF: Individual
effects of GSTM1 and GSTT1 polymorphisms on cervical or ovarian
cancer risk: An updated meta-analysis. Front Genet. 13:10745702023.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Li L, Li JG, Liu CY and Ding YJ: Effect of
CYP1A1 and GSTM1 genetic polymorphisms on bone tumor
susceptibility. Genet Mol Res. 14:16600–16607. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mlakar SJ, Osredkar J, Prezelj J and Marc
J: Opposite effects of GSTM1-and GSTT1: Gene deletion variants on
bone mineral density. Dis Markers. 31:279–287. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wang Y, Jia Y, Xu Y, Liu X, Wang Z, Liu Y,
Li B and Liu J: Exploring the association between glutathione
metabolism and ferroptosis in osteoblasts with disuse osteoporosis
and the key genes connecting them. Comput Math Methods Med.
12:49147272022.PubMed/NCBI
|
39
|
Li P, Liu Z, Wang J, Bi X, Xiao Y, Qiao R,
Zhou X, Guo S, Wan P, Chang M, et al: Gstm1/Gstt1 is essential for
reducing cisplatin ototoxicity in CBA/CaJ mice. FASEB J.
36:e223732022. View Article : Google Scholar : PubMed/NCBI
|
40
|
Feng H, Schorpp K, Jin J, Yozwiak CE,
Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka
JM, et al: Transferrin receptor is a specific ferroptosis marker.
Cell Rep. 30:3411–3423. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kinov P, Leithner A, Radl R, Bodo K,
Khoschsorur GA, Schauenstein K and Windhager R: Role of free
radicals in aseptic loosening of hip arthroplasty. J Orthop Res.
24:55–62. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Dong J, Ruan B, Zhang L, Wei A, Li C, Tang
N, Zhu L, Jiang Q and Cao W: DNA methylation-mediated GPX4
transcriptional repression and osteoblast ferroptosis promote
titanium particle-induced osteolysis. Research (Wash D C).
7:04572024.PubMed/NCBI
|
43
|
Xu Y, Sang W, Zhong Y, Xue S, Yang M, Wang
C, Lu H, Huan R, Mao X, Zhu L, et al: CoCrMo-Nanoparticles induced
peri-implant osteolysis by promoting osteoblast ferroptosis via
regulating Nrf2-ARE signalling pathway. Cell Prolif. 54:e131422021.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Fujita H, Ochi M, Ono M, Aoyama E, Ogino
T, Kondo Y and Ohuchi H: Glutathione accelerates osteoclast
differentiation and inflammatory bone destruction. Free Radic Res.
53:226–236. 2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hyeon S, Lee H, Yang Y and Jeong W: Nrf2
deficiency induces oxidative stress and promotes RANKL-induced
osteoclast differentiation. Free Radic Biol Med. 65:789–799. 2013.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Mediero A and Cronstein BN: Adenosine and
bone metabolism. Trends Endocrinol Metab. 24:290–300. 2013.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Agrawal A and Jørgensen NR: Extracellular
purines and bone homeostasis. Biochem Pharmacol. 187:1144252021.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Kara FM, Chitu V, Sloane J, Axelrod M,
Fredholm BB, Stanley ER and Cronstein BN: Adenosine A1 receptors
(A1Rs) play a critical role in osteoclast formation and function.
FASEB J. 24:2325–2333. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Huang M, Xu S, Liu L, Zhang M, Guo J, Yuan
Y, Xu J, Chen X and Zou J: m6A methylation regulates osteoblastic
differentiation and bone remodeling. Front Cell Dev Biol.
9:7833222021. View Article : Google Scholar : PubMed/NCBI
|
50
|
Potter LR: Guanylyl cyclase structure,
function and regulation. Cell Signal. 23:1921–1926. 2011.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Kaneko K, Miyamoto Y, Tsukuura R, Sasa K,
Akaike T, Fujii S, Yoshimura K, Nagayama K, Hoshino M, Inoue S, et
al: 8-Nitro-cGMP is a promoter of osteoclast differentiation
induced by RANKL. Nitric Oxide. 72:46–51. 2018. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wagner BM, Robinson JW, Prickett TCR,
Espiner EA, Khosla S, Gaddy D, Suva LJ and Potter LR: Guanylyl
Cyclase-B dependent bone formation in mice is associated with
youth, increased osteoblasts, and decreased osteoclasts. Calcif
Tissue Int. 111:506–518. 2022. View Article : Google Scholar : PubMed/NCBI
|
53
|
Li Y, Xiao W, Luo W, Zeng C, Deng Z, Ren
W, Wu G and Lei G: Alterations of amino acid metabolism in
osteoarthritis: Its implications for nutrition and health. Amino
Acids. 48:907–914. 2016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Rucci N, Capulli M, Ventura L, Angelucci
A, Peruzzi B, Tillgren V, Muraca M, Heinegård D and Teti A:
Proline/arginine-rich end leucine-rich repeat protein N-terminus is
a novel osteoclast antagonist that counteracts bone loss. J Bone
Miner Res. 28:1912–1924. 2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Li Z, Yang X, Fu R, Wu Z, Xu S, Jiao J,
Qian M, Zhang L, Wu C, Xie T, et al: Kisspeptin-10 binding to Gpr54
in osteoclasts prevents bone loss by activating Dusp18-mediated
dephosphorylation of Src. Nat Commun. 15:13002024. View Article : Google Scholar : PubMed/NCBI
|
56
|
Shao H, Shen J, Wang M, Cui J, Wang Y, Zhu
S, Zhang W, Yang H, Xu Y and Geng D: Icariin protects against
titanium particle-induced osteolysis and inflammatory response in a
mouse calvarial model. Biomaterials. 60:92–99. 2015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Deng Z, Wang S, Li M, Fu G, Liu C, Li S,
Jin J, Lyu FJ, Ma Y and Zheng Q: A modified murine calvarial
osteolysis model exposed to ti particles in aseptic loosening.
Biomed Res Int. 25:34034892020. View Article : Google Scholar : PubMed/NCBI
|
58
|
Jiang H, Wang Y, Deng Z, Jin J, Meng J,
Chen S, Wang J, Qiu Y, Guo T and Zhao J: Construction and
evaluation of a murine calvarial osteolysis model by exposure to
CoCrMo particles in aseptic loosening. J Vis Exp. 17:562762018.
|