
The key role of miR‑378 in kidney diseases (Review)
- Authors:
- Yangyang Liu
- Shuqing Shi
- Tao Cheng
- Haoshuo Wang
- Huan Wang
- Yuanhui Hu
-
Affiliations: Department of Cardiovascular Diseases, Sanming Integrated Medicine Hospital, Sanming, Fujian 365000, P.R. China, Department of Cardiovascular Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China, Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China - Published online on: February 19, 2025 https://doi.org/10.3892/mmr.2025.13466
- Article Number: 101
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Petracci E, Pasini L, Urbini M, Felip E, Stella F, Davoli F, Salvi M, Beau-Faller M, Tebaldi M, Azzali I, et al: Circulating cell-free and extracellular vesicles-derived microRNA as prognostic biomarkers in patients with early-stage NSCLC: Results from RESTING study. J Exp Clin Cancer Res. 43:2412024. View Article : Google Scholar : PubMed/NCBI | |
Xie Y and Chen X: Epidemiology, major outcomes, risk factors, prevention and management of chronic kidney disease in China. Am J Nephrol. 28:1–7. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Ke R, Teixeira W, Dong Y, Ding R, Yang J, Ai X, Ye DW and Shang J: Global, regional, and national burden of CKD due to glomerulonephritis from 1990 to 2019: A systematic analysis from the global burden of disease study 2019. Clin J Am Soc Nephrol. 18:60–71. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tang PCT, Chan ASW, Zhang CB, García Córdoba CA, Zhang YY, To KF, Leung KT, Lan HY and Tang PM: TGF-β1 signaling: immune dynamics of chronic kidney diseases. Front Med (Lausanne). 8:6285192021. View Article : Google Scholar : PubMed/NCBI | |
Slaby O, Jancovicova J, Lakomy R, Svoboda M, Poprach A, Fabian P, Kren L, Michalek J and Vyzula R: Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J Exp Clin Cancer Res. 29:902010. View Article : Google Scholar : PubMed/NCBI | |
Fisher JN, Terao M, Fratelli M, Kurosaki M, Paroni G, Zanetti A, Gianni M, Bolis M, Lupi M, Tsykin A, et al: MicroRNA networks regulated by all-trans retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells. Oncotarget. 6:13176–13200. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chandrasekaran K, Karolina DS, Sepramaniam S, Armugam A, Marelyn Wintour E, Bertram JF and Jeyaseelan K: Role of microRNAs in kidney homeostasis and disease. Kidney Int. 81:617–627. 2012. View Article : Google Scholar : PubMed/NCBI | |
Machado IF, Teodoro JS, Palmeira CM and Rolo AP: miR-378a: A new emerging microRNA in metabolism. Cell Mol Life Sci. 77:1947–1958. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Ingolia NT, Weissman JS and Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 466:835–840. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jopling CL, Yi M, Lancaster AM, Lemon SM and Sarnow P: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science. 309:1577–1581. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vo NK, Cambronne XA and Goodman RH: MicroRNA pathways in neural development and plasticity. Curr Opin Neurobiol. 20:457–465. 2010. View Article : Google Scholar : PubMed/NCBI | |
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C and Foti M: Deciphering miRNAs' action through miRNA editing. Int J Mol Sci. 20:62492019. View Article : Google Scholar : PubMed/NCBI | |
Colhoun HM and Marcovecchio ML: Biomarkers of diabetic kidney disease. Diabetologia. 61:996–1011. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A and Rodrigues-Diez RR: Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 16:269–288. 2020. View Article : Google Scholar : PubMed/NCBI | |
Trionfini P, Benigni A and Remuzzi G: MicroRNAs in kidney physiology and disease. Nat Rev Nephrol. 11:23–33. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X and Yu HM: Overexpression of HOXA-AS2 inhibits inflammation and apoptosis in podocytes via sponging miRNA-302b-3p to upregulate TIMP3. Eur Rev Med Pharmacol Sci. 24:4963–4970. 2020.PubMed/NCBI | |
Wang L and Li H: MiR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3. Biosci Rep. 40:BSR201936532020. View Article : Google Scholar : PubMed/NCBI | |
Luan J, Fu J, Wang D, Jiao C, Cui X, Chen C, Liu D, Zhang Y, Wang Y, Yuen PST, et al: miR-150-based RNA interference attenuates tubulointerstitial fibrosis through the SOCS1/JAK/STAT pathway in vivo and in vitro. Mol Ther Nucleic Acids. 22:871–884. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang W, Zhang J, Gao S, Xu T and Yin Y: JAK/STAT signaling in diabetic kidney disease. Front Cell Dev Biol. 11:12332592023. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Liu P, Chen Z, He Y, Zhang B, Dai G, Xia W, Liu Y and Chen X: PTEN improve renal fibrosis in vitro and in vivo through inhibiting FAK/AKT signaling pathway. J Cell Biochem. 120:17887–17897. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li S, Jia Y, Xue M, Hu F, Zheng Z, Zhang S, Ren S, Yang Y, Si Z, Wang L, et al: Inhibiting Rab27a in renal tubular epithelial cells attenuates the inflammation of diabetic kidney disease through the miR-26a-5p/CHAC1/NF-kB pathway. Life Sci. 261:1183472020. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Xu L, Liang R, Yang C and Wang P: Baicalin suppresses renal fibrosis through microRNA-124/TLR4/NF-κB axis in streptozotocin-induced diabetic nephropathy mice and high glucose-treated human proximal tubule epithelial cells. J Physiol Biochem. 76:407–416. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang X, He S, Zhang F and Li Y: Gypenosides suppress fibrosis of the renal NRK-49F cells by targeting miR-378a-5p through the PI3K/AKT signaling pathway. J Ethnopharmacol. 311:1164662023. View Article : Google Scholar : PubMed/NCBI | |
Chen LT, Xu SD, Xu H, Zhang JF, Ning JF and Wang SF: MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. Med Oncol. 29:1673–1680. 2012. View Article : Google Scholar : PubMed/NCBI | |
Welten SMJ, Goossens EAC, Quax PHA and Nossent AY: The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc Res. 110:6–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dasari S and Bernard Tchounwou PB: Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol. 740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI | |
Florea AM and Büsselberg D: Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). 3:1351–1371. 2011. View Article : Google Scholar : PubMed/NCBI | |
Faig J, Haughton M, Taylor RC, D'Agostino RB Jr, Whelen MJ, Porosnicu Rodriguez KA, Bonomi M, Murea M and Porosnicu M: Retrospective analysis of cisplatin nephrotoxicity in patients with head and neck cancer receiving outpatient treatment with concurrent high-dose cisplatin and radiotherapy. Am J Clin Oncol. 41:432–440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wolenski FS, Shah P, Sano T, Shinozawa T, Bernard H, Gallacher MJ, Wyllie SD, Varrone G, Cicia LA, Carsillo ME, et al: Identification of microRNA biomarker candidates in urine and plasma from rats with kidney or liver damage. J Appl Toxicol. 37:278–286. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Ma P, Zhao Z, Jiang N, Lian D, Huo P and Yang H: miRNA-mRNA regulatory network analysis of mesenchymal stem cell treatment in cisplatin-induced acute kidney injury identifies roles for miR-210/Serpine1 and miR-378/Fos in regulating inflammation. Mol Med Rep. 20:1509–1522. 2019.PubMed/NCBI | |
Moghadasali R, Mutsaers HAM, Azarnia M, Aghdami N, Baharvand H, Torensma R, Wilmer MJG and Masereeuw R: Mesenchymal stem cell-conditioned medium accelerates regeneration of human renal proximal tubule epithelial cells after gentamicin toxicity. Exp Toxicol Pathol. 65:595–600. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Ni J, Chen S, Bai M, Lin J, Ding G, Zhang Y, Sun P, Jia Z, Huang S, et al: MicroRNA-709 mediates acute tubular injury through effects on mitochondrial function. J Am Soc Nephrol. 29:449–461. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qin W, Xie W, Yang X, Xia N and Yang K: Inhibiting microRNA-449 attenuates cisplatin-induced injury in NRK-52E cells possibly via regulating the SIRT1/P53/BAX pathway. Med Sci Monit. 22:818–823. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang YW, Wang X, Ren X and Zhang M: Involvement of glucose-regulated protein 78 and spliced X-box binding protein 1 in the protective effect of gliclazide in diabetic nephropathy. Diabetes Res Clin Pract. 146:41–47. 2018. View Article : Google Scholar : PubMed/NCBI | |
Onozato ML, Tojo A, Goto A and Fujita T: Radical scavenging effect of gliclazide in diabetic rats fed with a high cholesterol diet. Kidney Int. 65:951–960. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Pan J, Yang J and Zhang D: LncRNA136131 suppresses apoptosis of renal tubular epithelial cells in acute kidney injury by targeting the miR-378a-3p/Rab10 axis. Aging (Albany NY). 14:3666–3686. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ding C, Ding X, Zheng J, Wang B, Li Y, Xiang H, Dou M, Qiao Y, Tian P and Xue W: miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis. 11:9292020. View Article : Google Scholar : PubMed/NCBI | |
Bhatt JR and Finelli A: Landmarks in the diagnosis and treatment of renal cell carcinoma. Nat Rev Urol. 11:517–525. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gupta K, Miller JD, Li JZ, Russell MW and Charbonneau C: Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): A literature review. Cancer Treat Rev. 34:193–205. 2008. View Article : Google Scholar : PubMed/NCBI | |
Inman BA, Harrison MR and George DJ: Novel immunotherapeutic strategies in development for renal cell carcinoma. Eur Urol. 63:881–889. 2013. View Article : Google Scholar : PubMed/NCBI | |
Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R, Svoboda M, Vyzula R and Slaby O: Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med. 10:552012. View Article : Google Scholar : PubMed/NCBI | |
Hauser S, Wulfken LM, Holdenrieder S, Moritz R, Ohlmann CH, Jung V, Becker F, Herrmann E, Walgenbach-Brünagel G, von Ruecker A, et al: Analysis of serum microRNAs (miR-26a-2*, miR-191, miR-337-3p and miR-378) as potential biomarkers in renal cell carcinoma. Cancer Epidemiol. 36:391–394. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fedorko M, Stanik M, Iliev R, Redova-Lojova M, Machackova T, Svoboda M, Pacik D, Dolezel J and Slaby O: Combination of MiR-378 and MiR-210 serum levels enables sensitive detection of renal cell carcinoma. Int J Mol Sci. 16:23382–23389. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Wang W, Zhao Z, Wen Z, Li Y, Ge Z, Lai Y and Ni L: A three miRNAs panel in paraffin tissue serves as tool for predicting prognosis of renal cell carcinoma. Front Oncol. 14:13918442024. View Article : Google Scholar : PubMed/NCBI | |
Li H, Dai S, Zhen T, Shi H, Zhang F, Yang Y, Kang L, Liang Y and Han A: Clinical and biological significance of miR-378a-3p and miR-378a-5p in colorectal cancer. Eur J Cancer. 50:1207–1221. 2014. View Article : Google Scholar : PubMed/NCBI | |
Reddy MA, Tak Park J and Natarajan R: Epigenetic modifications in the pathogenesis of diabetic nephropathy. Semin Nephrol. 33:341–353. 2013. View Article : Google Scholar : PubMed/NCBI | |
MacIsaac RJ, Ekinci EI and Jerums G: Markers of and risk factors for the development and progression of diabetic kidney disease. Am J Kidney Dis. 63 (Suppl 2):S39–S62. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ritz E, Zeng XX and Rychlík I: Clinical manifestation and natural history of diabetic nephropathy. Contributions to Nephrology. Lai KN and Tang SCW: Vol 170. S Karger AG; Basel: pp. 19–27. 2011, View Article : Google Scholar : PubMed/NCBI | |
Sohn E, Kim J, Kim C-S, Kim YS, Jang DS and Kim JS: Extract of the aerial parts of Aster koraiensis reduced development of diabetic nephropathy via anti-apoptosis of podocytes in streptozotocin-induced diabetic rats. Biochem Biophys Res Commun. 391:733–738. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kato M and Natarajan R: MicroRNAs in diabetic nephropathy: Functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci. 1353:72–88. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lei X, Zhang BD, Ren JG and Luo FL: Astragaloside suppresses apoptosis of the podocytes in rats with diabetic nephropathy via miR-378/TRAF5 signaling pathway. Life Sci. 206:77–83. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Yao K, Wise AF, Lau R, Shen HH, Tesch GH and Ricardo SD: miR-378 reduces mesangial hypertrophy and kidney tubular fibrosis via MAPK signalling. Clin Sci (Lond). 131:411–423. 2017. View Article : Google Scholar : PubMed/NCBI | |
Assmann TS, Recamonde-Mendoza M, Costa AR, Puñales M, Tschiedel B, Canani LH, Bauer AC and Crispim D: Circulating miRNAs in diabetic kidney disease: Case-control study and in silico analyses. Acta Diabetol. 56:55–65. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou R, Jia YP, Wang Y, Li Z, Qi J and Yang Y: Elevating miR-378 strengthens the isoflurane-mediated effects on myocardial ischemia-reperfusion injury in mice via suppression of MAPK1. Am J Transl Res. 13:2350–2364. 2021.PubMed/NCBI | |
Sun H, Wang W, Han P, Shao M, Song G, Du H, Yi T and Li S: Astragaloside IV ameliorates renal injury in db/db mice. Sci Rep. 6:325452016. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Cao A, Chu S, Wang Y, Zang Y, Mao X, Wang H, Wang Y, Liu C, Zhang X and Peng W: Astragaloside IV attenuates podocyte apoptosis mediated by endoplasmic reticulum stress through upregulating sarco/endoplasmic reticulum Ca2+-ATPase 2 expression in diabetic nephropathy. Front Pharmacol. 7:5002016. View Article : Google Scholar : PubMed/NCBI | |
Geng W, Wei R, Liu S, Tang L, Zhu H, Chen P, Wu J, Zhang X, Zhu F, Yin Z and Chen X: Shenhua tablet inhibits mesangial cell proliferation in rats with chronic anti-Thy-1 nephritis. Biol Res. 49:172016. View Article : Google Scholar : PubMed/NCBI | |
Jin M, Yin Z, Wei K, Xie Y, Bai X, Fu B, Feng Z, Li Q and Chen X: Metanephric mesenchyme-derived Foxd1+ mesangial precursor cells alleviate mesangial proliferative glomerulonephritis. J Mol Med (Berl). 97:553–561. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Li Y, Liu Y and Xu Z: circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells. J Cell Physiol. 234:21249–21259. 2019. View Article : Google Scholar : PubMed/NCBI | |
He JY, Peng F, Chang JK, Zhao Y, Qu Y, Liu J, Liu R, Li P, Cai G, Hong Q and Chen X: The therapeutic effect of Shenhua tablet against mesangial cell proliferation and renal inflammation in mesangial proliferative glomerulonephritis. Biomed PharmacotheR. 165:1152332023. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Xu X, Yang Z, Zhang L and Liu Y, Ma A, Xu G, Tang M, Jing T, Wu L and Liu Y: POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1. EBioMedicine. 41:320–332. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kamejima S, Tatsumi N, Anraku A, Suzuki H, Ohkido I, Yokoo T and Okabe M: Gcm1 is involved in cell proliferation and fibrosis during kidney regeneration after ischemia-reperfusion injury. Sci Rep. 9:78832019. View Article : Google Scholar : PubMed/NCBI | |
Ledeganck KJ, Gielis EM, Abramowicz D, Stenvinkel P, Shiels PG and Van Craenenbroeck AH: MicroRNAs in AKI and kidney transplantation. Clin J Am Soc Nephrol. 14:454–468. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiong L, Ding S and Yang T: The protective function of miR-378 in the ischemia-reperfusion injury during renal transplantation and subsequent interstitial fibrosis of the renal allograft. Int Urol Nephrol. 52:1791–1800. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wilflingseder J, Regele H, Perco P, Kainz A, Soleiman A, Mühlbacher F, Mayer B and Oberbauer R: miRNA profiling discriminates types of rejection and injury in human renal allografts. Transplantation. 95:835–841. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ben-Dov IZ, Muthukumar T, Morozov P, Mueller FB, Tuschl T and Suthanthiran M: MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis. Transplantation. 94:1086–1094. 2012. View Article : Google Scholar : PubMed/NCBI |