1
|
Wang Y, Chao T, Li Q, He P, Zhang L and
Wang J: Metabolomic and transcriptomic analyses reveal the
potential mechanisms of dynamic ovarian development in goats during
sexual maturation. Int J Mol Sci. 25:98982024. View Article : Google Scholar : PubMed/NCBI
|
2
|
Nayudu PL, Vitt UA, Barrios De Tomasi J,
Pancharatna K and Ulloa-Aguirre A: Intact follicle culture: What it
can tell us about the roles of FSH glycoforms during follicle
development. Reprod Biomed Online. 5:240–253. 2002. View Article : Google Scholar : PubMed/NCBI
|
3
|
Paes VM, Vieira LA, Correia HHV, Sa NAR,
Moura AAA, Sales AD, Rodrigues APR, Magalhães-Padilha DM, Santos
FW, Apgar GA, et al: Effect of heat stress on the survival and
development of in vitro cultured bovine preantral follicles and on
in vitro maturation of cumulus-oocyte complex. Theriogenology.
86:994–1003. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dunlop CE and Anderson RA: The regulation
and assessment of follicular growth. Scand J Clin Lab Invest Suppl.
244:13–17. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Heeren AM, van Iperen L, Klootwijk DB, de
Melo Bernardo A, Roost MS, Gomes Fernandes MM, Louwe LA, Hilders
CG, Helmerhorst FM, van der Westerlaken LA, et al: Development of
the follicular basement membrane during human gametogenesis and
early folliculogenesis. BMC Dev Biol. 15:42015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Irving-Rodgers HF, Hummitzsch K,
Murdiyarso LS, Bonner WM, Sado Y, Ninomiya Y, Couchman JR, Sorokin
LM and Rodgers RJ: Dynamics of extracellular matrix in ovarian
follicles and corpora lutea of mice. Cell Tissue Res. 339:613–624.
2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Irving-Rodgers HF and Rodgers RJ:
Extracellular matrix of the developing ovarian follicle. Semin
Reprod Med. 24:195–203. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Woodruff TK and Shea LD: The role of the
extracellular matrix in ovarian follicle development. Reprod Sci.
14:6–10. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Willis EL, Bridges PJ and Fortune JE:
Progesterone receptor and prostaglandins mediate luteinizing
hormone-induced changes in messenger RNAs for ADAMTS proteases in
theca cells of bovine periovulatory follicles. Mol Reprod Dev.
84:55–66. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yung Y, Ophir L, Yerushalmi GM, Baum M,
Hourvitz A and Maman E: HAS2-AS1 is a novel LH/hCG target gene
regulating HAS2 expression and enhancing cumulus cells migration. J
Ovarian Res. 12:212019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xia X, Yang Y, Liu P, Chen L, Dai X, Xue P
and Wang Y: The senolytic drug ABT-263 accelerates ovarian aging in
older female mice. Sci Rep. 14:231782024. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xue L, Li X, Zhu X, Zhang J, Zhou S, Tang
W, Chen D, Chen Y, Dai J, Wu M, et al: Carbon tetrachloride
exposure induces ovarian damage through oxidative stress and
inflammatory mediated ovarian fibrosis. Ecotoxicol Environ Saf.
242:1138592022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yang YF, Cheng SY, Wang YL, Yue ZP, Yu YX,
Chen YZ, Wang WK, Xu ZR, Qi ZQ and Liu Y: Accumulated inflammation
and fibrosis participate in atrazine induced ovary toxicity in
mice. Environ Pollut. 360:1246722024. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fujimoto H, Yoshihara M, Rodgers R, Iyoshi
S, Mogi K, Miyamoto E, Hayakawa S, Hayashi M, Nomura S, Kitami K,
et al: Tumor-associated fibrosis: A unique mechanism promoting
ovarian cancer metastasis and peritoneal dissemination. Cancer
Metastasis Rev. 43:1037–1053. 2024. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhou F, Shi LB and Zhang SY: Ovarian
fibrosis: A phenomenon of concern. Chin Med J (Engl). 130:365–371.
2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Isola JVV, Hense JD, Osorio CAP, Biswas S,
Alberola-Ila J, Ocañas SR, Schneider A and Stout MB: Reproductive
Ageing: Inflammation, immune cells, and cellular senescence in the
aging ovary. Reproduction. 168:e2304992024. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cui L, Bao H, Liu Z, Man X, Liu H, Hou Y,
Luo Q, Wang S, Fu Q and Zhang H: hUMSCs regulate the
differentiation of ovarian stromal cells via TGF-β1/Smad3 signaling
pathway to inhibit ovarian fibrosis to repair ovarian function in
POI rats. Stem Cell Res Ther. 11:3862020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Han S, Wang S, Fan X, Chen M, Wang X,
Huang Y, Zhang H, Ma Y, Wang J and Zhang C: Abnormal expression of
prolyl oligopeptidase (POP) and Its catalytic products Ac-SDKP
contributes to the ovarian fibrosis change in polycystic ovary
syndrome (PCOS) mice. Biomedicines. 11:19272023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Miao ZL, Guo L, Wang YX, Cui R, Yang N,
Huang MQ, Qin WB, Chen J, Li HM, Wang ZN and Wei XC: The
intervention effect of Rosiglitozone in ovarian fibrosis of PCOS
rats. Biomed Environ Sci. 25:46–52. 2012.PubMed/NCBI
|
20
|
Wang D, Wang T, Wang R, Zhang X, Wang L,
Xiang Z, Zhuang L, Shen S, Wang H, Gao Q and Wang Y: Suppression of
p66Shc prevents hyperandrogenism-induced ovarian oxidative stress
and fibrosis. J Transl Med. 18:842020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang D, Weng Y, Zhang Y, Wang R, Wang T,
Zhou J, Shen S, Wang H and Wang Y: Exposure to hyperandrogen drives
ovarian dysfunction and fibrosis by activating the NLRP3
inflammasome in mice. Sci Total Environ. 745:1410492020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhou Y, Lan H, Dong Z, Cao W, Zeng Z and
Song JL: Dietary proanthocyanidins alleviated ovarian fibrosis in
letrozole-induced polycystic ovary syndrome in rats. J Food
Biochem. 45:e137232021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ali T and Grote P: Beyond the
RNA-dependent function of LncRNA genes. Elife. 9:e605832020.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu XF, Li J, Cao YX, Chen DW, Zhang ZG, He
XJ, Ji DM and Chen BL: Differential expression of long noncoding
RNAs in human cumulus cells related to embryo developmental
potential: A Microarray Analysis. Reprod Sci. 22:672–678. 2015.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Nakagawa S, Shimada M, Yanaka K, Mito M,
Arai T, Takahashi E, Fujita Y, Fujimori T, Standaert L, Marine JC
and Hirose T: The lncRNA is required for corpus luteum formation
and the establishment of pregnancy in a subpopulation of mice.
Development. 141:4618–4627. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Du X, Liu L and Li Q, Zhang L, Pan Z and
Li Q: NORFA, long intergenic noncoding RNA, maintains sow fertility
by inhibiting granulosa cell death. Commun Biol. 3:1312020.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Yang Z, Jiang S, Shang J, Jiang Y, Dai Y,
Xu B, Yu Y, Liang Z and Yang Y: LncRNA: Shedding light on
mechanisms and opportunities in fibrosis and aging. Ageing Res Rev.
52:17–31. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Piccoli MT, Gupta SK, Viereck J,
Foinquinos A, Samolovac S, Kramer FL, Garg A, Remke J, Zimmer K,
Batkai S and Thum T: Inhibition of the cardiac Fibroblast-Enriched
lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction.
Circ Res. 121:575–583. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Feng M, Tang PM, Huang XR, Sun SF, You YK,
Xiao J, Lv LL, Xu AP and Lan HY: TGF-β Mediates renal fibrosis via
the Smad3-Erbb4-IR long noncoding RNA Axis. Mol Ther. 26:148–161.
2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Pachera E, Assassi S, Salazar GA, Stellato
M, Renoux F, Wunderlin A, Blyszczuk P, Lafyatis R, Kurreeman F, de
Vries-Bouwstra J, et al: Long noncoding RNA H19X is a key mediator
of TGF-β-driven fibrosis. J Clin Invest. 130:4888–4905. 2020.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Xu S, Dong W and Shi Y: LncRNA PICSAR
binds to miR-485-5p and activates TGF-beta1/Smad to promote
abnormal proliferation of hypertrophic scar fibroblasts (HSFs) and
excessive deposition of extracellular matrix (ECM). Med Mol
Morphol. 54:337–345. 2021. View Article : Google Scholar : PubMed/NCBI
|
32
|
D'Angelo E and Agostini M: Long non-coding
RNA and extracellular matrix: The hidden players in cancer-stroma
Cross-talk. Noncoding RNA Res. 3:174–177. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Abolghasemi M and Mahjoub S: Long
noncoding RNAs as a piece of polycystic ovary syndrome puzzle. Mol
Biol Rep. 48:3845–3851. 2021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tu J, Chen Y, Li Z, Yang H, Chen H and Yu
Z: Long non-coding RNAs in ovarian granulosa cells. J Ovarian Res.
13:632020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Tu M, Wu Y, Mu L and Zhang D: Long
non-coding RNAs: Novel players in the pathogenesis of polycystic
ovary syndrome. Ann Transl Med. 9:1732021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Matsubara S, Kurihara M and Kimura AP: A
long non-coding RNA transcribed from conserved non-coding sequences
contributes to the mouse prolyl oligopeptidase gene activation. J
Biochem. 155:243–256. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Feng F, Wang J, Bao R, Li L, Tong X, Han
S, Zhang H, Wen W, Xiao L and Zhang C: LncPrep + 96kb 2.2 kb
inhibits estradiol secretion from granulosa cells by inducing EDF1
translocation. Front Cell Dev Biol. 8:4812020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Yu Q, Cheng P, Wu J and Guo C: PPARγ/NF-κB
and TGF-β1/Smad pathway are involved in the anti-fibrotic effects
of levo-tetrahydropalmatine on liver fibrosis. J Cell Mol Med.
25:1645–1660. 2021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hendrix AO, Hughes CL and Selgrade JF:
Modeling endocrine control of the pituitary-ovarian axis:
Androgenic influence and chaotic dynamics. Bull Math Biol.
76:136–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Landry DA, Vaishnav HT and Vanderhyden BC:
The significance of ovarian fibrosis. Oncotarget. 11:4366–4370.
2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Verrecchia F and Mauviel A: Transforming
growth factor-beta and fibrosis. World J Gastroenterol.
13:3056–3062. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Velez LM, Seldin M and Motta AB:
Inflammation and reproductive function in women with polycystic
ovary syndromedagger. Biol Reprod. 104:1205–1217. 2021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Repaci A, Gambineri A and Pasquali R: The
role of low-grade inflammation in the polycystic ovary syndrome.
Mol Cell Endocrinol. 335:30–41. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Artimani T, Karimi J, Mehdizadeh M,
Yavangi M, Khanlarzadeh E, Ghorbani M, Asadi S and Kheiripour N:
Evaluation of pro-oxidant-antioxidant balance (PAB) and its
association with inflammatory cytokines in polycystic ovary
syndrome (PCOS). Gynecol Endocrinol. 34:148–152. 2018. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xiong YL, Liang XY, Yang X, Li Y and Wei
LN: Low-grade chronic inflammation in the peripheral blood and
ovaries of women with polycystic ovarian syndrome. Eur J Obstet
Gynecol Reprod Biol. 159:148–150. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang Q, Bu S, Sun J, Xu M, Yao X, He K
and Lai D: Paracrine effects of human amniotic epithelial cells
protect against chemotherapy-induced ovarian damage. Stem Cell Res
Ther. 8:2702017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lo BKM, Archibong-Omon A, Ploutarchou P,
Day AJ, Milner CM and Williams SA: Oocyte-specific ablation of N-
and O-glycans alters cumulus cell signalling and extracellular
matrix composition. Reprod Fertil Dev. 31:529–537. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
MacDonald JA, Takai Y, Ishihara O, Seki H,
Woods DC and Tilly JL: Extracellular matrix signaling activates
differentiation of adult ovary-derived oogonial stem cells in a
species-specific manner. Fertil Steril. 111:794–805. 2019.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Curry TE Jr and Smith MF: Impact of
extracellular matrix remodeling on ovulation and the
folliculo-luteal transition. Semin Reprod Med. 24:228–241. 2006.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Smith MF, McIntush EW, Ricke WA, Kojima FN
and Smith GW: Regulation of ovarian extracellular matrix
remodelling by metalloproteinases and their tissue inhibitors:
Effects on follicular development, ovulation and luteal function. J
Reprod Fertil Suppl. 54:367–381. 1999.PubMed/NCBI
|
52
|
Gong Y, Liu M, Zhang Q, Li J, Cai H, Ran
J, Ma L, Ma Y and Quan S: Lysine acetyltransferase 14 mediates
TGF-β-induced fibrosis in ovarian endometrioma via co-operation
with serum response factor. J Transl Med. 22:5612024. View Article : Google Scholar : PubMed/NCBI
|
53
|
Kwak HJ, Park MJ, Cho H, Park CM, Moon SI,
Lee HC, Park IC, Kim MS, Rhee CH and Hong SI: Transforming growth
factor-beta1 induces tissue inhibitor of metalloproteinase-1
expression via activation of extracellular signal-regulated kinase
and Sp1 in human fibrosarcoma cells. Mol Cancer Res. 4:209–220.
2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Cho Y, Song MK, Kim DI, Kim MS and Lee K:
Adverse outcome pathway-based assessment of pulmonary toxicity from
the in vivo mixture of biocides dinotefuran and cetylpyridinium
chloride. Heliyon. 11:e421342025. View Article : Google Scholar : PubMed/NCBI
|
55
|
Li J, Guo C and Wu J: The agonists of
peroxisome Proliferator-activated Receptor-gamma for liver
fibrosis. Drug Des Devel Ther. 15:2619–2628. 2021. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhang F, Kong D, Lu Y and Zheng S:
Peroxisome proliferator-activated receptor-gamma as a therapeutic
target for hepatic fibrosis: From bench to bedside. Cell Mol Life
Sci. 70:259–276. 2013. View Article : Google Scholar : PubMed/NCBI
|
57
|
Van Linthout S, Seeland U, Riad A,
Eckhardt O, Hohl M, Dhayat N, Richter U, Fischer JW, Böhm M,
Pauschinger M, et al: Reduced MMP-2 activity contributes to cardiac
fibrosis in experimental diabetic cardiomyopathy. Basic Res
Cardiol. 103:319–327. 2008. View Article : Google Scholar : PubMed/NCBI
|
58
|
Liu B, Guan YM and Zheng JH: Elevated
serum levels of matrix metalloproteinase-2 in women with polycystic
ovarian syndrome. Int J Gynaecol Obstet. 96:204–205. 2007.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Wang D, Wang W, Liang Q, He X, Xia Y, Shen
S, Wang H, Gao Q and Wang Y: DHEA-induced ovarian hyperfibrosis is
mediated by TGF-beta signaling pathway. J Ovarian Res. 11:62018.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Yang J, Zhong T, Xiao G, Chen Y, Liu J,
Xia C, Du H, Kang X, Lin Y, Guan R, et al: Polymorphisms and
haplotypes of the TGF-β1 gene are associated with risk of
polycystic ovary syndrome in Chinese Han women. Eur J Obstet
Gynecol Reprod Biol. 186:1–7. 2015. View Article : Google Scholar : PubMed/NCBI
|
61
|
McIlvenna LC, Altintas A, Patten RK,
McAinch AJ, Rodgers RJ, Stepto NK, Barrès R and Moreno-Asso A:
Transforming growth factor β1 impairs the transcriptomic response
to contraction in myotubes from women with polycystic ovary
syndrome. J Physiol. 600:3313–3330. 2022. View Article : Google Scholar : PubMed/NCBI
|
62
|
Babkova K, Korabecny J, Soukup O,
Nepovimova E, Jun D and Kuca K: Prolyl oligopeptidase and its role
in the organism: Attention to the most promising and clinically
relevant inhibitors. Future Med Chem. 9:1015–1038. 2017. View Article : Google Scholar : PubMed/NCBI
|
63
|
Cavasin MA, Rhaleb NE, Yang XP and
Carretero OA: Prolyl oligopeptidase is involved in release of the
antifibrotic peptide Ac-SDKP. Hypertension. 43:1140–1145. 2004.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Mizunuma Y, Kanasaki K, Nitta K, Nakamura
Y, Ishigaki Y, Takagaki Y, Kitada M, Li S, Liu H, Li J, et al:
CD-1db/db mice: A novel type 2 diabetic mouse model with
progressive kidney fibrosis. J Diabetes Investig. 11:1470–1481.
2020. View Article : Google Scholar : PubMed/NCBI
|
65
|
Jeukendrup AE, Currell K, Clarke J, Cole J
and Blannin AK: Effect of beverage glucose and sodium content on
fluid delivery. Nutr Metab (Lond). 6:92009. View Article : Google Scholar : PubMed/NCBI
|