1
|
Mehta SL, Arruri V and Vemuganti R: Role
of transcription factors, noncoding RNAs, epitranscriptomics, and
epigenetics in post-ischemic neuroinflammation. J Neurochem.
168:3430–3448. 2024.PubMed/NCBI
|
2
|
Zhu GM, Chen SQ, Jiang QG, Cao Y, Guo Y
and Ye LQ: MiR-216b inhibits gastric cancer proliferation and
migration by targeting PARK7. Indian J Pathol Microbiol. 64:52–57.
2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Dai ZT, Xiang Y, Duan YY, Wang J, Li JP,
Zhang HM, Cheng C, Wang Q, Zhang TC and Liao XH: MiR-17-5p and
MKL-1 modulate stem cell characteristics of gastric cancer cells.
Int J Biol Sci. 17:2278–2293. 2021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xin L, Liu L, Liu C, Zhou LQ, Zhou Q, Yuan
YW, Li SH and Zhang HT: DNA-methylation-mediated silencing of
miR-7-5p promotes gastric cancer stem cell invasion via increasing
Smo and Hes1. J Cell Physiol. 235:2643–2654. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lu RH, Xiao ZQ, Zhou JD, Yin CQ, Chen ZZ,
Tang FJ and Wang SH: MiR-199a-5p represses the stemness of
cutaneous squamous cell carcinoma stem cells by targeting Sirt1 and
CD44ICD cleavage signaling. Cell Cycle. 19:1–14. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Miao L, Qi J, Zhao Q, Wu QN, Wei DL, Wei
XL, Liu J, Chen J, Zeng ZL, Ju HQ, et al: Targeting the STING
pathway in tumor-associated macrophages regulates innate immune
sensing of gastric cancer cells. Theranostics. 10:498–515. 2020.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhan P, Shu X, Chen M, Sun L, Yu L, Liu J,
Sun L, Yang Z and Ran Y: miR-98-5p inhibits gastric cancer cell
stemness and chemoresistance by targeting branched-chain
aminotransferases 1. Life Sci. 276:1194052021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv
L, Liu J, Xu Y, Shen Y and Yang M: Noncoding RNAs in gastric
cancer: Implications for drug resistance. Mol Cancer. 19:622020.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang H, Hu Y, Weng M, Liu X, Wan P, Hu Y,
Ma M, Zhang Y, Xia H and Lv K: Hypoxia inducible lncRNA-CBSLR
modulates ferroptosis through m6A-YTHDF2-dependent modulation of
CBS in gastric cancer. J Adv Res. 37:91–106. 2021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Luo Y, Zheng S, Wu Q, Wu J, Zhou R, Wang
C, Wu Z, Rong X, Huang N, Sun L, et al: Long noncoding RNA (lncRNA)
EIF3J-DT induces chemoresistance of gastric cancer via autophagy
activation. Autophagy. 17:4083–4101. 2021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang A, Liu X, Liu P, Feng Y, Liu H, Gao
S, Huo L, Han X, Wang J and Kong W: LncRNA UCA1 promotes
development of gastric cancer via the miR-145/MYO6 axis. Cell Mol
Biol Lett. 26:332021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xu J, Wang X, Zhu C and Wang K: A review
of current evidence about lncRNA MEG3: A tumor suppressor in
multiple cancers. Front Cell Dev Biol. 10:9976332022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xin L, Wu Y, Liu C, Zeng F, Wang JL, Wu
DZ, Wu JP, Yue ZQ, Gan JH, Lu H, et al: Exosome-mediated transfer
of lncRNA HCG18 promotes M2 macrophage polarization in gastric
cancer. Mol Immunol. 140:196–205. 2021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li C, Chen Z, Gao J, Tang T, Zhou L, Zhang
G, Zhang D, Shen C, Guo L and Fu T: MIR4435-2HG in exosomes
promotes gastric carcinogenesis by inducing M2 polarization in
macrophages. Front Oncol. 12:10177452022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu H, Xu Y, Yao B, Sui T, Lai L and Li Z:
A novel N6-methyladenosine (m6A)-dependent fate decision for the
lncRNA THOR. Cell Death Dis. 11:6132020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang H, Meng Q and Ma B: Characterization
of the prognostic m6A-related lncRNA signature in gastric cancer.
Front Oncol. 11:6302602021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang C, Zhang M, Ge S, Huang W, Lin X,
Gao J, Gong J and Shen L: Reduced m6A modification predicts
malignant phenotypes and augmented Wnt/PI3K-Akt signaling in
gastric cancer. Cancer Med. 8:4766–4781. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kassambara A, Kosinski M and Biecek P:
survminer: Drawing survival curves using ‘ggplot2’. CRAN:
Contributed Packages. 2016.
|
19
|
Tay JK, Narasimhan B and Hastie T: Elastic
net regularization paths for all generalized linear models. J Stat
Softw. 106:12023. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zheng J, Dou R, Zhang X, Zhong B, Fang C,
Xu Q, Di Z, Huang S, Lin Z, Song J, et al: LINC00543 promotes
colorectal cancer metastasis by driving EMT and inducing the M2
polarization of tumor associated macrophages. J Transl Med.
21:1532023. View Article : Google Scholar : PubMed/NCBI
|
21
|
Qiu S, Xie L, Lu C, Gu C, Xia Y, Lv J,
Xuan Z, Fang L, Yang J, Zhang L, et al: Gastric cancer-derived
exosomal miR-519a-3p promotes liver metastasis by inducing
intrahepatic M2-like macrophage-mediated angiogenesis. J Exp Clin
Cancer Res. 41:2962022. View Article : Google Scholar : PubMed/NCBI
|
22
|
Thrift AP and El-Serag HB: Burden of
gastric cancer. Clin Gastroenterol Hepatol. 18:534–542. 2020.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Cusenza VY, Tameni A, Neri A and Frazzi R:
The lncRNA epigenetics: The significance of m6A and m5C lncRNA
modifications in cancer. Front Oncol. 13:10636362023. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou L, Li J, Liao M, Zhang Q and Yang M:
LncRNA MIR155HG induces M2 macrophage polarization and drug
resistance of colorectal cancer cells by regulating ANXA2. Cancer
Immunol Immunother. 71:1075–1091. 2022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Barbieri I and Kouzarides T: Role of RNA
modifications in cancer. Nat Rev Cancer. 20:303–322. 2020.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Sexton RE, Al Hallak MN, Diab M and Azmi
AS: Gastric cancer: A comprehensive review of current and future
treatment strategies. Cancer Metastasis Rev. 39:1179–1203. 2020.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Akhtar J, Lugoboni M and Junion G: m6A RNA
modification in transcription regulation. Transcription.
12:266–276. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ru W, Zhang X, Yue B, Qi A, Shen X, Huang
Y, Lan X, Lei C and Chen H: Insight into m6A methylation
from occurrence to functions. Open Biol. 10:2000912020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W,
Guo W, Wu X, Pu C, Hu X, et al: METTL3/IGF2BP3 axis inhibits tumor
immune surveillance by upregulating N6-methyladenosine
modification of PD-L1 mRNA in breast cancer. Mol Cancer. 21:602022.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Du A, Li S, Zhou Y, Disoma C, Liao Y,
Zhang Y, Chen Z, Yang Q, Liu P, Liu S, et al: M6A-mediated
upregulation of circMDK promotes tumorigenesis and acts as a
nanotherapeutic target in hepatocellular carcinoma. Mol Cancer.
21:1092022. View Article : Google Scholar : PubMed/NCBI
|
31
|
He PC and He C: m6 A RNA
methylation: From mechanisms to therapeutic potential. EMBO J.
40:e1059772021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Selmi T and Lanzuolo C: Driving chromatin
organisation through N6-methyladenosine modification of RNA: What
Do we know and what lies ahead? Genes (Basel). 13:3402022.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Yu ZL and Zhu ZM: N6-methyladenosine
related long non-coding RNAs and immune cell infiltration in the
tumor microenvironment of gastric cancer. Biol Proced Online.
23:152021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Han T, Xu D, Zhu J, Li J, Liu L and Deng
Y: Identification of a robust signature for clinical outcomes and
immunotherapy response in gastric cancer: Based on
N6-methyladenosine related long noncoding RNAs. Cancer Cell Int.
21:4322021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhang C, Huang S, Zhuang H, Ruan S, Zhou
Z, Huang K, Ji F, Ma Z, Hou B and He X: YTHDF2 promotes the liver
cancer stem cell phenotype and cancer metastasis by regulating OCT4
expression via m6A RNA methylation. Oncogene. 39:4507–4518. 2020.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang M, Wang J, Jin Y, Zheng Q, Xing M,
Tang Y, Ma Y, Li L, Yao B, Wu H and Ma C: YTHDF2-mediated FGF14-AS2
decay promotes osteolytic metastasis of breast cancer by enhancing
RUNX2 mRNA translation. Br J Cancer. 127:2141–2153. 2022.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Fang Y, Wu X, Gu Y, Shi R, Yu T, Pan Y,
Zhang J, Jing X, Ma P and Shu Y: LINC00659 cooperated with ALKBH5
to accelerate gastric cancer progression by stabilising JAK1 mRNA
in an m6 A-YTHDF2-dependent manner. Clin Transl Med.
13:e12052023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yan J, Huang X, Zhang X, Chen Z, Ye C,
Xiang W and Huang Z: LncRNA LINC00470 promotes the degradation of
PTEN mRNA to facilitate malignant behavior in gastric cancer cells.
Biochem Biophys Res Commun. 521:887–893. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shen X, Zhao K, Xu L, Cheng G, Zhu J, Gan
L, Wu Y and Zhuang Z: YTHDF2 inhibits gastric cancer cell growth by
regulating FOXC2 signaling pathway. Front Genet. 11:5920422020.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhou Y, Fan K, Dou N, Li L, Wang J, Chen
J, Li Y and Gao Y: YTHDF2 exerts tumor-suppressor roles in gastric
cancer via up-regulating PPP2CA independently of m6A
modification. Biol Proced Online. 25:62023. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yu P, Xu T, Ma W, Fang X, Bao Y, Xu C,
Huang J, Sun Y and Li G: PRMT6-mediated transcriptional activation
of ythdf2 promotes glioblastoma migration, invasion, and emt via
the wnt-β-catenin pathway. J Exp Clin Cancer Res. 43:1162024.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Ma B, Wang J and Yusufu P: Tumor-derived
exosome ElNF1-AS1 affects the progression of gastric cancer by
promoting M2 polarization of macrophages. Environ Toxicol.
38:2228–2239. 2023. View Article : Google Scholar : PubMed/NCBI
|