
Mitochondria‑derived peptides: Promising microproteins in cardiovascular diseases (Review)
- Authors:
- Yutong Ran
- Zhiliang Guo
- Lijuan Zhang
- Hong Li
- Xiaoyun Zhang
- Xiumei Guan
- Xiaodong Cui
- Hao Chen
- Min Cheng
-
Affiliations: School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China, Department of Spinal Surgery, The 80th Group Army Hospital of Chinese PLA, Weifang, Shandong 261021, P.R. China, Stroke Centre, Second People's Hospital, Weifang, Shandong 261041, P.R. China - Published online on: March 13, 2025 https://doi.org/10.3892/mmr.2025.13492
- Article Number: 127
-
Copyright: © Ran et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Crick F: Central dogma of molecular biology. Nature. 227:561–563. 1970. View Article : Google Scholar : PubMed/NCBI | |
van den Akker GGH, Caron MMJ, Peffers MJ and Welting TJM: Ribosome dysfunction in osteoarthritis. Curr Opin Rheumatol. 34:61–67. 2022. View Article : Google Scholar : PubMed/NCBI | |
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, et al: The transcriptional landscape of the mammalian genome. Science. 309:1559–1563. 2005. View Article : Google Scholar : PubMed/NCBI | |
Plaza S, Menschaert G and Payre F: In search of lost small peptides. Annu Rev Cell Dev Biol. 33:391–416. 2017. View Article : Google Scholar : PubMed/NCBI | |
Leong AZX, Lee PY, Mohtar MA, Syafruddin SE, Pung YF and Low TY: Short open reading frames (sORFs) and microproteins: An update on their identification and validation measures. J Biomed Sci. 29:192022. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Hao J, Wang P and Xu Y: The role of mitochondrial dysfunction in CKD-related vascular calcification: From mechanisms to therapeutics. Kidney Int Rep. 9:2596–2607. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y and Chang X: Advances in pathogenesis and treatment of vascular endothelial injury-related diseases mediated by mitochondrial abnormality. Front Pharmacol. 15:14226862024. View Article : Google Scholar : PubMed/NCBI | |
Chang X, Lochner A, Wang HH, Wang S, Zhu H, Ren J and Zhou H: Coronary microvascular injury in myocardial infarction: Perception and knowledge for mitochondrial quality control. Theranostics. 11:6766–6785. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Wu H, Zhang J, Cong C and Zhang L: The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Mol Cell Biochem. 479:1673–1696. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Yang T, Yi J, Hu H, Lai Q, Nie L, Liu M, Chu C and Yang J: AP39 through AMPK-ULK1-FUNDC1 pathway regulates mitophagy, inhibits pyroptosis, and improves doxorubicin-induced myocardial fibrosis. iScience. 27:1093212024. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Liu Y, Xu L, Xu J, Xiong Y, Peng Y, Ding K, Zheng S, Yang N, Zhang Z, et al: Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis. 13:5122022. View Article : Google Scholar : PubMed/NCBI | |
Zang GY, Yin Q, Shao C, Sun Z, Zhang LL, Xu Y, Li LH and Wang ZQ: CD137 signaling aggravates myocardial ischemia-reperfusion injury by inhibiting mitophagy mediated NLRP3 inflammasome activation. J Geriatr Cardiol. 20:223–237. 2023. View Article : Google Scholar : PubMed/NCBI | |
Forte M, Schirone L, Ameri P, Basso C, Catalucci D, Modica J, Chimenti C, Crotti L, Frati G, Rubattu S, et al: The role of mitochondrial dynamics in cardiovascular diseases. Br J Pharmacol. 178:2060–2076. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH and Hausenloy DJ: Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine. 57:1028842020. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Tan H, Liu X and Wu Q: Correlation between the expression of Drp1 in vascular endothelial cells and inflammatory factors in hypertension rats. Exp Ther Med. 15:3892–3898. 2018.PubMed/NCBI | |
Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors AA, et al: Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 14:238–250. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bensasson D, Zhang D, Hartl DL and Hewitt GM: Mitochondrial pseudogenes: Evolution's misplaced witnesses. Trends Ecol Evol. 16:314–321. 2001. View Article : Google Scholar : PubMed/NCBI | |
Popov LD: Mitochondrial peptides-appropriate options for therapeutic exploitation. Cell Tissue Res. 377:161–165. 2019. View Article : Google Scholar : PubMed/NCBI | |
Benayoun BA and Lee C: MOTS-c: A mitochondrial-encoded regulator of the nucleus. Bioessays. 41:e19000462019. View Article : Google Scholar : PubMed/NCBI | |
Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AM, Haugen E, Bracken CP, Rackham O, Stamatoyannopoulos JA, et al: The human mitochondrial transcriptome. Cell. 146:645–658. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Xiao J, Wan J, Cohen P and Yen K: Mitochondrially derived peptides as novel regulators of metabolism. J Physiol. 595:6613–6621. 2017. View Article : Google Scholar : PubMed/NCBI | |
Son JM and Lee C: Mitochondria: Multifaceted regulators of aging. BMB Rep. 52:13–23. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, et al: A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci USA. 98:6336–6341. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cobb LJ, Lee C, Xiao J, Yen K, Wong RG, Nakamura HK, Mehta HH, Gao Q, Ashur C, Huffman DM, et al: Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging (Albany NY). 8:796–809. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, Kim SJ, Mehta H, Hevener AL, de Cabo R, et al: The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 21:443–454. 2015. View Article : Google Scholar : PubMed/NCBI | |
Miller B, Kim SJ, Mehta HH, Cao K, Kumagai H, Thumaty N, Leelaprachakul N, Braniff RG, Jiao H, Vaughan J, et al: Mitochondrial DNA variation in Alzheimer's disease reveals a unique microprotein called SHMOOSE. Mol Psychiatry. 28:1813–1826. 2023. View Article : Google Scholar : PubMed/NCBI | |
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, et al: 2024 Heart disease and stroke statistics: A report of US and global data from the american heart association. Circulation. 149:e347–e913. 2024. View Article : Google Scholar : PubMed/NCBI | |
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2021 update: A report from the american heart association. Circulation. 143:e254–e743. 2021. View Article : Google Scholar : PubMed/NCBI | |
Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E and Epstein SE: Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol. 67:2050–2060. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roy P, Orecchioni M and Ley K: How the immune system shapes atherosclerosis: Roles of innate and adaptive immunity. Nat Rev Immunol. 22:251–265. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yamagishi Y, Hashimoto Y, Niikura T and Nishimoto I: Identification of essential amino acids in humanin, a neuroprotective factor against Alzheimer's disease-relevant insults. Peptides. 24:585–595. 2003. View Article : Google Scholar : PubMed/NCBI | |
Thiankhaw K, Chattipakorn K, Chattipakorn SC and Chattipakorn N: Roles of humanin and derivatives on the pathology of neurodegenerative diseases and cognition. Biochim Biophys Acta Gen Subj. 1866:1300972022. View Article : Google Scholar : PubMed/NCBI | |
Niikura T: Humanin and Alzheimer's disease: The beginning of a new field. Biochim Biophys Acta Gen Subj. 1866:1300242022. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Sonada S, Yoshikawa A, Ohinata K and Yoshikawa M: Rubimetide, humanin, and MMK1 exert anxiolytic-like activities via the formyl peptide receptor 2 in mice followed by the successive activation of DP1, A2A, and GABAA receptors. Peptides. 83:16–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
Murakami M, Nagahama M, Maruyama T and Niikura T: Humanin ameliorates diazepam-induced memory deficit in mice. Neuropeptides. 62:65–70. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F and Nishimoto I: Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun. 283:460–468. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gong Z, Tasset I, Diaz A, Anguiano J, Tas E, Cui L, Kuliawat R, Liu H, Kühn B, Cuervo AM and Muzumdar R: Humanin is an endogenous activator of chaperone-mediated autophagy. J Cell Biol. 217:635–647. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sreekumar PG, Ishikawa K, Spee C, Mehta HH, Wan J, Yen K, Cohen P, Kannan R and Hinton DR: The mitochondrial-derived peptide humanin protects RPE cells from oxidative stress, senescence, and mitochondrial dysfunction. Invest Ophthalmol Vis Sci. 57:1238–1253. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gong Z and Tasset I: Humanin enhances the cellular response to stress by activation of chaperone-mediated autophagy. Oncotarget. 9:10832–10833. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qin Q, Jin J, He F, Zheng Y, Li T, Zhang Y and He J: Humanin promotes mitochondrial biogenesis in pancreatic MIN6 β-cells. Biochem Biophys Res Commun. 497:292–297. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sreekumar PG and Kannan R: Mechanisms of protection of retinal pigment epithelial cells from oxidant injury by humanin and other mitochondrial-derived peptides: Implications for age-related macular degeneration. Redox Biol. 37:1016632020. View Article : Google Scholar : PubMed/NCBI | |
Muzumdar RH, Huffman DM, Atzmon G, Buettner C, Cobb LJ, Fishman S, Budagov T, Cui L, Einstein FH, Poduval A, et al: Humanin: A novel central regulator of peripheral insulin action. PLoS One. 4:e63342009. View Article : Google Scholar : PubMed/NCBI | |
Hoang PT, Park P, Cobb LJ, Paharkova-Vatchkova V, Hakimi M, Cohen P and Lee KW: The neurosurvival factor humanin inhibits beta-cell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice. Metabolism. 59:343–349. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lue Y, Swerdloff R, Jia Y and Wang C: The emerging role of mitochondrial derived peptide humanin in the testis. Biochim Biophys Acta Gen Subj. 1865:1300092021. View Article : Google Scholar : PubMed/NCBI | |
Mottaghi-Dastjerdi N, Soltany-Rezaee-Rad M, Sepehrizadeh Z, Roshandel G, Ebrahimifard F and Setayesh N: Genome expression analysis by suppression subtractive hybridization identified overexpression of humanin, a target gene in gastric cancer chemoresistance. Daru. 22:142014. View Article : Google Scholar : PubMed/NCBI | |
Omar NN, Tash RF, Shoukry Y and ElSaeed KO: Breaking the ritual metabolic cycle in order to save acetyl CoA: A potential role for mitochondrial humanin in T2 bladder cancer aggressiveness. J Egypt Natl Canc Inst. 29:69–76. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang SF, Chen S, Tseng LM and Lee HC: Role of the mitochondrial stress response in human cancer progression. Exp Biol Med (Maywood). 245:861–878. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim KH, Son JM, Benayoun BA and Lee C: The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell Metab. 28:516–524.e17. 2018. View Article : Google Scholar : PubMed/NCBI | |
Steinberg GR and Kemp BE: AMPK in health and disease. Physiol Rev. 89:1025–1078. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Sun L, Zhuang Z, Hu X and Dong D: Mitochondrial-derived peptides in diabetes and its complications. Front Endocrinol (Lausanne). 12:8081202021. View Article : Google Scholar : PubMed/NCBI | |
Bonkowski MS and Sinclair DA: Slowing ageing by design: The rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 17:679–690. 2016. View Article : Google Scholar : PubMed/NCBI | |
Imai S and Guarente L: NAD+ and sirtuins in aging and disease. Trends Cell Biol. 24:464–471. 2014. View Article : Google Scholar : PubMed/NCBI | |
Che N, Qiu W, Wang JK, Sun XX, Xu LX, Liu R and Gu L: MOTS-c improves osteoporosis by promoting the synthesis of type I collagen in osteoblasts via TGF-β/SMAD signaling pathway. Eur Rev Med Pharmacol Sci. 23:3183–3189. 2019.PubMed/NCBI | |
Yan Z, Zhu S, Wang H, Wang L, Du T, Ye Z, Zhai D, Zhu Z, Tian X, Lu Z and Cao X: MOTS-c inhibits osteolysis in the mouse calvaria by affecting osteocyte-osteoclast crosstalk and inhibiting inflammation. Pharmacol Res. 147:1043812019. View Article : Google Scholar : PubMed/NCBI | |
Sartori M, Vincenzi F, Ravani A, Cepollaro S, Martini L, Varani K, Fini M and Tschon M: RAW 264.7 co-cultured with ultra-high molecular weight polyethylene particles spontaneously differentiate into osteoclasts: An in vitro model of periprosthetic osteolysis. J Biomed Mater Res A. 105:510–520. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mohtashami Z, Singh MK, Salimiaghdam N, Ozgul M and Kenney MC: MOTS-c, the most recent mitochondrial derived peptide in human aging and age-related diseases. Int J Mol Sci. 23:119912022. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Chang X, Nie Y, Shen Y, Liang X, Peng Y and Chang M: Peripheral administration of a cell-penetrating MOTS-c analogue enhances memory and attenuates Aβ1-42- or LPS-induced memory impairment through inhibiting neuroinflammation. ACS Chem Neurosci. 12:1506–1518. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhai D, Ye Z, Jiang Y, Xu C, Ruan B, Yang Y, Lei X, Xiang A, Lu H, Zhu Z, et al: MOTS-c peptide increases survival and decreases bacterial load in mice infected with MRSA. Mol Immunol. 92:151–160. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Chang X, Nie Y, Xu L, Yang L, Peng Y and Chang M: Orally administered MOTS-c analogue ameliorates dextran sulfate sodium-induced colitis by inhibiting inflammation and apoptosis. Eur J Pharmacol. 939:1754692023. View Article : Google Scholar : PubMed/NCBI | |
Xiao J, Zhang Q, Shan Y, Ye F, Zhang X, Cheng J, Wang X, Zhao Y, Dan G, Chen M and Sai Y: The mitochondrial-derived peptide (MOTS-c) interacted with Nrf2 to defend the antioxidant system to protect dopaminergic neurons against rotenone exposure. Mol Neurobiol. 60:5915–5930. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Li M, Liu Y, Bai Y, Yin T, Chen Y, Jiang J and Liu S: MOTS-c is an effective target for treating cancer-induced bone pain through the induction of AMPK-mediated mitochondrial biogenesis. Acta Biochim Biophys Sin (Shanghai). 56:1323–1339. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yin Y, Li Y, Ma B, Ren C, Zhao S and Li J, Gong Y, Yang H and Li J: Mitochondrial-derived peptide MOTS-c suppresses ovarian cancer progression by attenuating USP7-mediated LARS1 deubiquitination. Adv Sci (Weinh). 11:e24056202024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li Z, Ren Y, Lei Y, Yang S, Shi Y, Peng H, Yang W, Guo T, Yu Y and Xiong Y: Mitochondrial-derived peptides in cardiovascular disease: Novel insights and therapeutic opportunities. J Adv Res. 64:99–115. 2024. View Article : Google Scholar : PubMed/NCBI | |
Okada AK, Teranishi K, Lobo F, Isas JM, Xiao J, Yen K, Cohen P and Langen R: The mitochondrial-derived peptides, HumaninS14G and small humanin-like peptide 2, exhibit chaperone-like activity. Sci Rep. 7:78022017. View Article : Google Scholar : PubMed/NCBI | |
Nashine S and Kenney MC: Effects of mitochondrial-derived peptides (MDPs) on mitochondrial and cellular health in AMD. Cells. 9:11022020. View Article : Google Scholar : PubMed/NCBI | |
Shin JH, Kim HW, Rhyu IJ, Song KJ and Kee SH: Axin expression reduces staurosporine-induced mitochondria-mediated cell death in HeLa cells. Exp Cell Res. 318:2022–2033. 2012. View Article : Google Scholar : PubMed/NCBI | |
Emser SV, Schaschl H, Millesi E and Steinborn R: Extension of mitogenome enrichment based on single long-range PCR: mtDNAs and putative mitochondrial-derived peptides of five rodent hibernators. Front Genet. 12:6858062021. View Article : Google Scholar : PubMed/NCBI | |
Monteiro JP, Bennett M, Rodor J, Caudrillier A, Ulitsky I and Baker AH: Endothelial function and dysfunction in the cardiovascular system: The long non-coding road. Cardiovasc Res. 115:1692–1704. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kinlay S, Libby P and Ganz P: Endothelial function and coronary artery disease. Curr Opin Lipidol. 12:383–389. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rhee M, Lee J, Lee EY, Yoon KH and Lee SH: Lipid variability induces endothelial dysfunction by increasing inflammation and oxidative stress. Endocrinol Metab (Seoul). 39:511–520. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pober JS and Sessa WC: Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 7:803–815. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lüscher TF and Barton M: Biology of the endothelium. Clin Cardiol. 20 (11 Suppl 2):II-3-10. 1997. View Article : Google Scholar : PubMed/NCBI | |
Choi BJ, Prasad A, Gulati R, Best PJ, Lennon RJ, Barsness GW, Lerman LO and Lerman A: Coronary endothelial dysfunction in patients with early coronary artery disease is associated with the increase in intravascular lipid core plaque. Eur Heart J. 34:2047–2054. 2013. View Article : Google Scholar : PubMed/NCBI | |
Libby P, Ridker PM and Maseri A: Inflammation and atherosclerosis. Circulation. 105:1135–1143. 2002. View Article : Google Scholar : PubMed/NCBI | |
Choi BJ, Matsuo Y, Aoki T, Kwon TG, Prasad A, Gulati R, Lennon RJ, Lerman LO and Lerman A: Coronary endothelial dysfunction is associated with inflammation and vasa vasorum proliferation in patients with early atherosclerosis. Arterioscler Thromb Vasc Biol. 34:2473–2477. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kashiwagi M, Kitabata H, Ozaki Y, Imanishi T and Akasaka T: Fatty streak assessed by optical coherence tomography: Early atherosclerosis detection. Eur Heart J Cardiovasc Imaging. 14:1092013. View Article : Google Scholar : PubMed/NCBI | |
Bonetti PO, Lerman LO and Lerman A: Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 23:168–175. 2003. View Article : Google Scholar : PubMed/NCBI | |
Madamanchi NR, Vendrov A and Runge MS: Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 25:29–38. 2005. View Article : Google Scholar : PubMed/NCBI | |
Galle J, Hansen-Hagge T, Wanner C and Seibold S: Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis. 185:219–226. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hansson GK: Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 352:1685–1695. 2005. View Article : Google Scholar : PubMed/NCBI | |
van Dijk RA, Virmani R, von der Thusen JH, Schaapherder AF and Lindeman JHN: The natural history of aortic atherosclerosis: A systematic histopathological evaluation of the peri-renal region. Atherosclerosis. 210:100–106. 2010. View Article : Google Scholar : PubMed/NCBI | |
Widmer RJ, Flammer AJ, Herrmann J, Rodriguez-Porcel M, Wan J, Cohen P, Lerman LO and Lerman A: Circulating humanin levels are associated with preserved coronary endothelial function. Am J Physiol Heart Circ Physiol. 304:H393–H397. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coradduzza D, Cruciani S, Di Lorenzo B, De Miglio MR, Zinellu A, Maioli M, Medici S, Erre GL and Carru C: Plasma humanin and non-coding RNAs as biomarkers of endothelial dysfunction in rheumatoid arthritis: A pilot study. Noncoding RNA. 11:52025.PubMed/NCBI | |
Balan AI, Halatiu VB and Scridon A: Oxidative stress, inflammation, and mitochondrial dysfunction: A link between obesity and atrial fibrillation. Antioxidants (Basel). 13:1172024. View Article : Google Scholar : PubMed/NCBI | |
Kusminski CM and Scherer PE: Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab. 23:435–443. 2012. View Article : Google Scholar : PubMed/NCBI | |
Teodoro JS, Nunes S, Rolo AP, Reis F and Palmeira CM: Therapeutic options targeting oxidative stress, mitochondrial dysfunction and inflammation to hinder the progression of vascular complications of diabetes. Front Physiol. 9:18572019. View Article : Google Scholar : PubMed/NCBI | |
Cai H and Harrison DG: Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res. 87:840–844. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bachar AR, Scheffer L, Schroeder AS, Nakamura HK, Cobb LJ, Oh YK, Lerman LO, Pagano RE, Cohen P and Lerman A: Humanin is expressed in human vascular walls and has a cytoprotective effect against oxidized LDL-induced oxidative stress. Cardiovasc Res. 88:360–366. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hannun YA and Obeid LM: Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat Rev Mol Cell Biol. 9:139–150. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cai H, Liu Y, Men H and Zheng Y: Protective mechanism of humanin against oxidative stress in aging-related cardiovascular diseases. Front Endocrinol (Lausanne). 12:6831512021. View Article : Google Scholar : PubMed/NCBI | |
Chiba T, Yamada M, Hashimoto Y, Sato M, Sasabe J, Kita Y, Terashita K, Aiso S, Nishimoto I and Matsuoka M: Development of a femtomolar-acting humanin derivative named colivelin by attaching activity-dependent neurotrophic factor to its N terminus: Characterization of colivelin-mediated neuroprotection against Alzheimer's disease-relevant insults in vitro and in vivo. J Neurosci. 25:10252–10261. 2005. View Article : Google Scholar : PubMed/NCBI | |
Urban C, Hayes HV, Piraino G, Wolfe V, Lahni P, O'Connor M, Phares C and Zingarelli B: Colivelin, a synthetic derivative of humanin, ameliorates endothelial injury and glycocalyx shedding after sepsis in mice. Front Immunol. 13:9842982022. View Article : Google Scholar : PubMed/NCBI | |
Kirkman DL, Robinson AT, Rossman MJ, Seals DR and Edwards DG: Mitochondrial contributions to vascular endothelial dysfunction, arterial stiffness, and cardiovascular diseases. Am J Physiol Heart Circ Physiol. 320:H2080–H2100. 2021. View Article : Google Scholar : PubMed/NCBI | |
Thummasorn S, Shinlapawittayatorn K, Chattipakorn SC and Chattipakorn N: High-dose humanin analogue applied during ischemia exerts cardioprotection against ischemia/reperfusion injury by reducing mitochondrial dysfunction. Cardiovasc Ther. 35:2017. View Article : Google Scholar : PubMed/NCBI | |
Rentrop KP and Feit F: Reperfusion therapy for acute myocardial infarction: Concepts and controversies from inception to acceptance. Am Heart J. 170:971–980. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dabravolski SA, Nikiforov NG, Starodubova AV, Popkova TV and Orekhov AN: The role of mitochondria-derived peptides in cardiovascular diseases and their potential as therapeutic targets. Int J Mol Sci. 22:87702021. View Article : Google Scholar : PubMed/NCBI | |
Thummasorn S, Apaijai N, Kerdphoo S, Shinlapawittayatorn K, Chattipakorn SC and Chattipakorn N: Humanin exerts cardioprotection against cardiac ischemia/reperfusion injury through attenuation of mitochondrial dysfunction. Cardiovasc Ther. 34:404–414. 2016. View Article : Google Scholar : PubMed/NCBI | |
Arrigo M, Price S, Baran DA, Pöss J, Aissaoui N, Bayes-Genis A, Bonello L, François B, Gayat E, Gilard M, et al: Optimising clinical trials in acute myocardial infarction complicated by cardiogenic shock: A statement from the 2020 critical care clinical trialists workshop. Lancet Respir Med. 9:1192–1202. 2021. View Article : Google Scholar : PubMed/NCBI | |
Muzumdar RH, Huffman DM, Calvert JW, Jha S, Weinberg Y, Cui L, Nemkal A, Atzmon G, Klein L, Gundewar S, et al: Acute humanin therapy attenuates myocardial ischemia and reperfusion injury in mice. Arterioscler Thromb Vasc Biol. 30:1940–1948. 2010. View Article : Google Scholar : PubMed/NCBI | |
McDermott-Roe C, Ye J, Ahmed R, Sun XM, Serafin A, Ware J, Bottolo L, Muckett P, Cañas X, Zhang J, et al: Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature. 478:114–118. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rizzi E, Guimaraes DA, Ceron CS, Prado CM, Pinheiro LC, Martins-Oliveira A, Gerlach RF and Tanus-Santos JE: β1-Adrenergic blockers exert antioxidant effects, reduce matrix metalloproteinase activity, and improve renovascular hypertension-induced cardiac hypertrophy. Free Radic Biol Med. 73:308–317. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maillet M, van Berlo JH and Molkentin JD: Molecular basis of physiological heart growth: Fundamental concepts and new players. Nat Rev Mol Cell Biol. 14:38–48. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu J, McKinsey TA, Nicol RL and Olson EN: Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA. 97:4070–4075. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dai DF, Johnson SC, Villarin JJ, Chin MT, Nieves-Cintron M, Chen T, Marcinek DJ, Dorn GW II, Kang YJ, Prolla TA, et al: Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res. 108:837–846. 2011. View Article : Google Scholar : PubMed/NCBI | |
Blasco N, Cámara Y, Núñez E, Beà A, Barés G, Forné C, Ruíz-Meana M, Girón C, Barba I, García-Arumí E, et al: Cardiomyocyte hypertrophy induced by Endonuclease G deficiency requires reactive oxygen radicals accumulation and is inhibitable by the micropeptide humanin. Redox Biol. 16:146–156. 2018. View Article : Google Scholar : PubMed/NCBI | |
Blasco N, Beà A, Barés G, Girón C, Navaridas R, Irazoki A, López-Lluch G, Zorzano A, Dolcet X, Llovera M and Sanchis D: Involvement of the mitochondrial nuclease EndoG in the regulation of cell proliferation through the control of reactive oxygen species. Redox Biol. 37:1017362020. View Article : Google Scholar : PubMed/NCBI | |
Eghbali M, Blumenfeld OO, Seifter S, Buttrick PM, Leinwand LA, Robinson TF, Zern MA and Giambrone MA: Localization of types I, III and IV collagen mRNAs in rat heart cells by in situ hybridization. J Mol Cell Cardiol. 21:103–113. 1989. View Article : Google Scholar : PubMed/NCBI | |
Kong P, Christia P and Frangogiannis NG: The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 71:549–574. 2014. View Article : Google Scholar : PubMed/NCBI | |
Edgley AJ, Krum H and Kelly DJ: Targeting fibrosis for the treatment of heart failure: A role for transforming growth factor-β. Cardiovasc Ther. 30:e30–e40. 2012. View Article : Google Scholar : PubMed/NCBI | |
Piera-Velazquez S, Li Z and Jimenez SA: Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 179:1074–1080. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zeisberg EM and Kalluri R: Origins of cardiac fibroblasts. Circ Res. 107:1304–1312. 2010. View Article : Google Scholar : PubMed/NCBI | |
Travers JG, Kamal FA, Robbins J, Yutzey KE and Blaxall BC: Cardiac fibrosis: The fibroblast awakens. Circ Res. 118:1021–1040. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liguori TTA, Liguori GR, Moreira LFP and Harmsen MC: Fibroblast growth factor-2, but not the adipose tissue-derived stromal cells secretome, inhibits TGF-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. Sci Rep. 8:166332018. View Article : Google Scholar : PubMed/NCBI | |
Biernacka A and Frangogiannis NG: Aging and cardiac fibrosis. Aging Dis. 2:158–173. 2011.PubMed/NCBI | |
Sangaralingham SJ, Wang BH, Huang L, Kumfu S, Ichiki T, Krum H and Burnett JC Jr: Cardiorenal fibrosis and dysfunction in aging: Imbalance in mediators and regulators of collagen. Peptides. 76:108–114. 2016. View Article : Google Scholar : PubMed/NCBI | |
Biernacka A, Dobaczewski M and Frangogiannis NG: TGF-β signaling in fibrosis. Growth Factors. 29:196–202. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qin Q, Mehta H, Yen K, Navarrete G, Brandhorst S, Wan J, Delrio S, Zhang X, Lerman LO, Cohen P and Lerman A: Chronic treatment with the mitochondrial peptide humanin prevents age-related myocardial fibrosis in mice. Am J Physiol Heart Circ Physiol. 315:H1127–H1136. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zavadzkas JA, Plyler RA, Bouges S, Koval CN, Rivers WT, Beck CU, Chang EI, Stroud RE, Mukherjee R and Spinale FG: Cardiac-restricted overexpression of extracellular matrix metalloproteinase inducer causes myocardial remodeling and dysfunction in aging mice. Am J Physiol Heart Circ Physiol. 295:H1394–H1402. 2008. View Article : Google Scholar : PubMed/NCBI | |
Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S and Sollott SJ: Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res. 104:1240–1252. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hirotani S, Zhai P, Tomita H, Galeotti J, Marquez JP, Gao S, Hong C, Yatani A, Avila J and Sadoshima J: Inhibition of glycogen synthase kinase 3beta during heart failure is protective. Circ Res. 101:1164–1174. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, Caforio ALP, Crea F, Goudevenos JA, Halvorsen S, et al: 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European society of cardiology (ESC). Eur Heart J. 39:119–177. 2018. View Article : Google Scholar : PubMed/NCBI | |
Choo EH, Kim PJ, Chang K, Ahn Y, Jeon DS, Lee JM, Kim DB, Her SH, Park CS, Kim HY, et al: The impact of no-reflow phenomena after primary percutaneous coronary intervention: a time-dependent analysis of mortality. Coron Artery Dis. 25:392–398. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wong DT, Puri R, Richardson JD, Worthley MI and Worthley SG: Myocardial ‘no-reflow’-diagnosis, pathophysiology and treatment. Int J Cardiol. 167:1798–1806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Çakmak T, Yaşar E, Çakmak E, Tekin S, Karakuş Y, Türkoğlu C and Yüksel F: Evaluation of coronary flow level with mots-C in patients with STEMI undergoing primary PCI. Arq Bras Cardiol. 120:e202203582023. View Article : Google Scholar : PubMed/NCBI | |
Marulanda J, Alqarni S and Murshed M: Mechanisms of vascular calcification and associated diseases. Curr Pharm Des. 20:5801–5810. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yao J, Yao Y and Boström KI: Contributions of the endothelium to vascular calcification. Front Cell Dev Biol. 9:6208822021. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Zhang Y, Yu CM, Ji QW, Cai M, Zhao YX and Zhou YJ: Current understanding of coronary artery calcification. J Geriatr Cardiol. 12:668–675. 2015.PubMed/NCBI | |
McCullough PA, Chinnaiyan KM, Agrawal V, Danielewicz E and Abela GS: Amplification of atherosclerotic calcification and Mönckeberg's sclerosis: A spectrum of the same disease process. Adv Chronic Kidney Dis. 15:396–412. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rasheed A and Cummins CL: Beyond the foam cell: The role of LXRs in preventing atherogenesis. Int J Mol Sci. 19:23072018. View Article : Google Scholar : PubMed/NCBI | |
Andrews J, Psaltis PJ, Bartolo BAD, Nicholls SJ and Puri R: Coronary arterial calcification: A review of mechanisms, promoters and imaging. Trends Cardiovasc Med. 28:491–501. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Xiao J, Li R, Qin X, Wang F, Mao Y, Liang W, Sheng X, Guo M, Song Y and Ji X: Metformin alleviates vascular calcification induced by vitamin D3 plus nicotine in rats via the AMPK pathway. Vascul Pharmacol. 81:83–90. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu M, Liu L, Song C, Chen W and Gui S: Ghrelin improves vascular autophagy in rats with vascular calcification. Life Sci. 179:23–29. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li KX, Du Q, Wang HP and Sun HJ: Death-associated protein kinase 3 deficiency alleviates vascular calcification via AMPK-mediated inhibition of endoplasmic reticulum stress. Eur J Pharmacol. 852:90–98. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wei M, Gan L, Liu Z, Liu L, Chang JR, Yin DC, Cao HL, Su XL and Smith WW: Mitochondrial-derived peptide MOTS-c attenuates vascular calcification and secondary myocardial remodeling via adenosine monophosphate-activated protein kinase signaling pathway. Cardiorenal Med. 10:42–50. 2020. View Article : Google Scholar : PubMed/NCBI | |
Honda J, Kimura T, Sakai S, Maruyama H, Tajiri K, Murakoshi N, Homma S, Miyauchi T and Aonuma K: The glucagon-like peptide-1 receptor agonist liraglutide improves hypoxia-induced pulmonary hypertension in mice partly via normalization of reduced ET(B) receptor expression. Physiol Res. 67 (Suppl 1):S175–S184. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boccellino M, Di Domenico M, Donniacuo M, Bitti G, Gritti G, Ambrosio P, Quagliuolo L and Rinaldi B: AT1-receptor blockade: Protective effects of irbesartan in cardiomyocytes under hypoxic stress. PLoS One. 13:e02022972018. View Article : Google Scholar : PubMed/NCBI | |
Qin Q, Delrio S, Wan J, Jay Widmer R, Cohen P, Lerman LO and Lerman A: Downregulation of circulating MOTS-c levels in patients with coronary endothelial dysfunction. Int J Cardiol. 254:23–27. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shen C, Wang J, Feng M, Peng J, Du X, Chu H and Chen X: The mitochondrial-derived peptide MOTS-c attenuates oxidative stress injury and the inflammatory response of H9c2 cells through the Nrf2/ARE and NF-κB pathways. Cardiovasc Eng Technol. 13:651–661. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li H, Ren K, Jiang T and Zhao GJ: MOTS-c attenuates endothelial dysfunction via suppressing the MAPK/NF-κB pathway. Int J Cardiol. 268:402018. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Fu H, Zhang J, Huang H and Zhong P: CIRP downregulation renders cardiac cells prone to apoptosis in heart failure. Biochem Biophys Res Commun. 517:545–550. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhong P, Peng J, Hu Y, Zhang J and Shen C: Mitochondrial derived peptide MOTS-c prevents the development of heart failure under pressure overload conditions in mice. J Cell Mol Med. 26:5369–5378. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hage C, Wärdell E, Linde C, Donal E, Lam CSP, Daubert C, Lund LH and Månsson-Broberg A: Circulating neuregulin1-β in heart failure with preserved and reduced left ventricular ejection fraction. ESC Heart Fail. 7:445–455. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hedhli N, Huang Q, Kalinowski A, Palmeri M, Hu X, Russell RR and Russell KS: Endothelium-derived neuregulin protects the heart against ischemic injury. Circulation. 123:2254–2262. 2011. View Article : Google Scholar : PubMed/NCBI | |
Brero A, Ramella R, Fitou A, Dati C, Alloatti G, Gallo MP and Levi R: Neuregulin-1beta1 rapidly modulates nitric oxide synthesis and calcium handling in rat cardiomyocytes. Cardiovasc Res. 88:443–452. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wang M, Ma J, Pang X, Yuan J, Pan Y, Fu Y and Laher I: MOTS-c and exercise restore cardiac function by activating of NRG1-ErbB signaling in diabetic rats. Front Endocrinol (Lausanne). 13:8120322022. View Article : Google Scholar : PubMed/NCBI | |
Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD and Singer M; Sepsis Definitions Task Force, : Developing a new definition and assessing new clinical criteria for septic shock: For the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 315:775–787. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hollenberg SM and Singer M: Pathophysiology of sepsis-induced cardiomyopathy. Nat Rev Cardiol. 18:424–434. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shen Q, Yuan Y, Li Z, Ling Y, Wang J, Gao M, Wang P, Li M, Lai L and Jin J: Berberine ameliorates septic cardiomyopathy through protecting mitochondria and upregulating Notch1 signaling in cardiomyocytes. Front Pharmacol. 15:15023542024. View Article : Google Scholar : PubMed/NCBI | |
Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, Colombara DV, Ikuta KS, Kissoon N, Finfer S, et al: Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the global burden of disease study. Lancet. 395:200–211. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ehrman RR, Sullivan AN, Favot MJ, Sherwin RL, Reynolds CA, Abidov A and Levy PD: Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: A review of the literature. Crit Care. 22:1122018. View Article : Google Scholar : PubMed/NCBI | |
Ravikumar N, Sayed MA, Poonsuph CJ, Sehgal R, Shirke MM and Harky A: Septic cardiomyopathy: From basics to management choices. Curr Probl Cardiol. 46:1007672021. View Article : Google Scholar : PubMed/NCBI | |
Carbone F, Liberale L, Preda A, Schindler TH and Montecucco F: Septic cardiomyopathy: From pathophysiology to the clinical setting. Cells. 11:28332022. View Article : Google Scholar : PubMed/NCBI | |
Khalid N, Patel PD, Alghareeb R, Hussain A and Maheshwari MV: The effect of sepsis on myocardial function: A review of pathophysiology, diagnostic criteria, and treatment. Cureus. 14:e261782022.PubMed/NCBI | |
Liu YC, Yu MM, Shou ST and Chai YF: Sepsis-induced cardiomyopathy: Mechanisms and treatments. Front Immunol. 8:10212017. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Xiao D, Yu K, Shalamu K, He B and Zhang M: The protective effect of the mitochondrial-derived peptide MOTS-c on LPS-induced septic cardiomyopathy. Acta Biochim Biophys Sin (Shanghai). 55:285–294. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Shen YJ, Tu QB, Zhao YR, Guo H, Wang J, Zhang L, Shi HW and Sun Y: Pedunculoside, a novel triterpene saponin extracted from Ilex rotunda, ameliorates high-fat diet induced hyperlipidemia in rats. Biomed Pharmacother. 101:608–616. 2018. View Article : Google Scholar : PubMed/NCBI | |
Su Z, Li K, Luo X, Zhu Y, Mai SY, Zhu Q, Yang B, Zhou X and Tao H: Aromatic acids and leucine derivatives produced from the deep-sea actinomycetes streptomyceschumphonensis SCSIO15079 with antihyperlipidemic activities. Mar Drugs. 20:2592022. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Wang H, Li J, Xu J and Cai P: Correlation analysis of the risk of ischemic stroke with related risk factors in a health examination population. Pak J Med Sci. 40:2533–2537. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Liu Z, Zhang H, Li D, Li Z, Huang J, He J, Lu L, Wen H, Yuan H, et al: The association between serum lipid profile levels and hypertension grades: A cross-sectional study at a health examination center. High Blood Press Cardiovasc Prev. 32:87–98. 2025. View Article : Google Scholar : PubMed/NCBI | |
Hannun YA and Obeid LM: Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol. 19:175–191. 2018. View Article : Google Scholar : PubMed/NCBI | |
Russo SB, Ross JS and Cowart LA: Sphingolipids in obesity, type 2 diabetes, and metabolic disease. Handb Exp Pharmacol. 373–401. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang Y, Wang P, Zhang SY, Dong Y, Zeng G, Yan Y, Sun L, Wu Q, Liu H, et al: Adipocyte hypoxia-inducible factor 2α suppresses atherosclerosis by promoting adipose ceramide catabolism. Cell Metab. 30:937–951.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mehta HH, Xiao J, Ramirez R, Miller B, Kim SJ, Cohen P and Yen K: Metabolomic profile of diet-induced obesity mice in response to humanin and small humanin-like peptide 2 treatment. Metabolomics. 15:882019. View Article : Google Scholar : PubMed/NCBI | |
Yen K, Miller B, Kumagai H, Silverstein A and Cohen P: Mitochondrial-derived microproteins: From discovery to function. Trends Genet. 41:132–145. 2025. View Article : Google Scholar : PubMed/NCBI | |
Merry TL, Chan A, Woodhead JST, Reynolds JC, Kumagai H, Kim SJ and Lee C: Mitochondrial-derived peptides in energy metabolism. Am J Physiol Endocrinol Metab. 319:E659–E666. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Miller B, Kumagai H, Silverstein AR, Flores M and Yen K: Mitochondrial-derived peptides in aging and age-related diseases. Geroscience. 43:1113–1121. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Wei X, Wei P, Lu H, Zhong L, Tan J, Liu H and Liu Z: MOTS-c functionally prevents metabolic disorders. Metabolites. 13:1252023. View Article : Google Scholar : PubMed/NCBI | |
Verma S, Goand UK, Husain A, Katekar RA, Garg R and Gayen JR: Challenges of peptide and protein drug delivery by oral route: Current strategies to improve the bioavailability. Drug Dev Res. 82:927–944. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mitragotri S, Burke PA and Langer R: Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat Rev Drug Discov. 13:655–672. 2014. View Article : Google Scholar : PubMed/NCBI |