
Advances in research on the intestinal microbiota in the mechanism and prevention of colorectal cancer (Review)
- Authors:
- Weitong Sun
- Shize Ma
- Dongdong Meng
- Chaoxing Wang
- Jinbo Zhang
-
Affiliations: College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China, Department of Medical Services, Xuzhou Morning Star Women's and Children's Hospital, Xuzhou, Jiangsu 221000, P.R. China - Published online on: March 19, 2025 https://doi.org/10.3892/mmr.2025.13498
- Article Number: 133
-
Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Zhang C, Stampfl-Mattersberger M, Ruckser R and Sebesta C: Colorectal cancer. Wien Med Wochenschr. 173:216–220. 2023.(In German). View Article : Google Scholar : PubMed/NCBI | |
Yu CY, Han JX, Zhang J, Jiang P, Shen C, Guo F, Tang J, Yan T, Tian X, Zhu X, et al: A 16q22.1 variant confers susceptibility to colorectal cancer as a distal regulator of ZFP90. Oncogene. 39:1347–1360. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chaplin A, Rodriguez RM, Segura-Sampedro JJ, Ochogavía-Seguí A, Romaguera D and Barceló-Coblijn G: Insights behind the relationship between colorectal cancer and obesity: Is visceral adipose tissue the missing link. Int J Mol Sci. 23:131282022. View Article : Google Scholar : PubMed/NCBI | |
Sawicki T, Ruszkowska M, Danielewicz A, Niedźwiedzka E, Arłukowicz T and Przybyłowicz KE: A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers (Basel). 13:20252021. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Sun N, Zeng H, Gao Y, Zhang N and Zhang W: Selenium deficiency leads to inflammation, autophagy, endoplasmic reticulum stress, apoptosis and contraction abnormalities via affecting intestinal flora in intestinal smooth muscle of mice. Front Immunol. 13:9476552022. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Zhang X, Wang Y, Guo Y, Zhu P, Li G, Zhang J, Ma Q and Zhao L: Dietary ellagic acid ameliorated Clostridium perfringens-induced subclinical necrotic enteritis in broilers via regulating inflammation and cecal microbiota. J Anim Sci Biotechnol. 13:472022. View Article : Google Scholar : PubMed/NCBI | |
Masheghati F, Asgharzadeh MR, Jafari A, Masoudi N and Maleki-Kakelar H: The role of gut microbiota and probiotics in preventing, treating, and boosting the immune system in colorectal cancer. Life Sci. 344:1225292024. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Luo X, Yang D, Li Y, Gong T, Li B, Cheng J, Chen R, Guo X and Yuan W: Effects of probiotic supplementation on related side effects after chemoradiotherapy in cancer patients. Front Oncol. 12:10321452022. View Article : Google Scholar : PubMed/NCBI | |
Lehouritis P, Stanton M, McCarthy FO, Jeavons M and Tangney M: Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria. J Control Release. 222:9–17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiong H, Wang J, Chang Z, Hu H, Yuan Z, Zhu Y, Hu Z, Wang C, Liu Y, Wang Y, et al: Gut microbiota display alternative profiles in patients with early-onset colorectal cancer. Front Cell Infect Microbiol. 12:10369462022. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Alcoholado L, Laborda-Illanes A, Otero A, Ordóñez R, González-González A, Plaza-Andrades I, Ramos-Molina B, Gómez-Millán J and Queipo-Ortuño MI: Relationships of gut microbiota composition, short-chain fatty acids and polyamines with the pathological response to neoadjuvant radiochemotherapy in colorectal cancer patients. Int J Mol Sci. 22:95492021. View Article : Google Scholar : PubMed/NCBI | |
Bi D, Zhu Y, Gao Y, Li H, Zhu X, Wei R, Xie R, Cai C, Wei Q and Qin H: Profiling fusobacterium infection at high taxonomic resolution reveals lineage-specific correlations in colorectal cancer. Nat Commun. 13:33362022. View Article : Google Scholar : PubMed/NCBI | |
Castro-Mejía JL, O'Ferrall S, Krych Ł, O'Mahony E, Namusoke H, Lanyero B, Kot W, Nabukeera-Barungi N, Michaelsen KF, Mølgaard C, et al: Restitution of gut microbiota in Ugandan children administered with probiotics (Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12) during treatment for severe acute malnutrition. Gut Microbes. 11:855–867. 2020. View Article : Google Scholar : PubMed/NCBI | |
Park YE and Kim JH: Revolutionizing gut health: exploring the role of gut microbiota and the potential of microbiome-based therapies in lower gastrointestinal diseases. Kosin Med J. 38:98–106. 2023. View Article : Google Scholar | |
Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J and Furet JP: Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 6:e163932011. View Article : Google Scholar : PubMed/NCBI | |
Fong W, Li Q and Yu J: Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene. 39:4925–4943. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Ling Z and Li L: The intestinal microbiota and colorectal cancer. Front Immunol. 11:6150562020. View Article : Google Scholar : PubMed/NCBI | |
Grigoryan H, Schiffman C, Gunter MJ, Naccarati A, Polidoro S, Dagnino S, Dudoit S, Vineis P and Rappaport SM: Cys34 adductomics links colorectal cancer with the gut microbiota and redox biology. Cancer Res. 79:6024–6031. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ying HQ, Chen W, Xiong CF, Wang Y, Li XJ and Cheng XX: Quantification of fibrinogen-to-pre-albumin ratio provides an integrating parameter for differential diagnosis and risk stratification of early-stage colorectal cancer. Cancer Cell Int. 22:1372022. View Article : Google Scholar : PubMed/NCBI | |
Song C, Duan F, Ju T, Qin Y, Zeng D, Shan S, Shi Y, Zhang Y and Lu W: Eleutheroside E supplementation prevents radiation-induced cognitive impairment and activates PKA signaling via gut microbiota. Commun Biol. 5:6802022. View Article : Google Scholar : PubMed/NCBI | |
Li R, Huang X, Yang L, Liang X, Huang W, Lai KP and Zhou L: Integrated analysis reveals the targets and mechanisms in immunosuppressive effect of mesalazine on ulcerative colitis. Front Nutr. 9:8676922022. View Article : Google Scholar : PubMed/NCBI | |
Fan H, Hao X, Gao Y, Yang J, Liu A, Su Y and Xia Y: Nodosin exerts an anti-colorectal cancer effect by inhibiting proliferation and triggering complex cell death in vitro and in vivo. Front Pharmacol. 13:9432722022. View Article : Google Scholar : PubMed/NCBI | |
Wan F, Zhong R, Wang M, Zhou Y, Chen Y, Yi B, Hou F, Liu L, Zhao Y, Chen L and Zhang H: Caffeic acid supplement alleviates colonic inflammation and oxidative stress potentially through improved gut microbiota community in mice. Front Microbiol. 12:7842112021. View Article : Google Scholar : PubMed/NCBI | |
Krieg C, Weber LM, Fosso B, Marzano M, Hardiman G, Olcina MM, Domingo E, El Aidy S, Mallah K, Robinson MD and Guglietta S: Complement downregulation promotes an inflammatory signature that renders colorectal cancer susceptible to immunotherapy. J Immunother Cancer. 10:e0047172022. View Article : Google Scholar : PubMed/NCBI | |
Leonard WJ and Spolski R: Interleukin-21: A modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol. 5:688–698. 2005. View Article : Google Scholar : PubMed/NCBI | |
Takahashi J, Yamamoto M, Yasukawa H, Nohara S, Nagata T, Shimozono K, Yanai T, Sasaki T, Okabe K, Shibata T, et al: Interleukin-22 directly activates myocardial STAT3 (Signal Transducer and Activator of Transcription-3) signaling pathway and prevents myocardial ischemia reperfusion injury. J Am Heart Assoc. 9:e0148142020. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Liu L, Pei X, Sun W, Jin Y, Yang ST and Wang M: A potential probiotic for diarrhea: Clostridium tyrobutyricum protects against LPS-induced epithelial dysfunction via IL-22 Produced By Th17 cells in the ileum. Front Immunol. 12:7582272021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Cheng X, Guo J, Bi Y, Kuang L, Ren J, Zhong J, Pan L, Zhang X, Guo Y, et al: MLKL inhibits intestinal tumorigenesis by suppressing STAT3 signaling pathway. Int J Biol Sci. 17:869–881. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiaoyu P, Chao G, Lihua D and Pengyu C: Gut bacteria affect the tumoral immune milieu: Distorting the efficacy of immunotherapy or not? Gut Microbes. 11:691–705. 2020. View Article : Google Scholar : PubMed/NCBI | |
Karstens KF, Kempski J, Giannou AD, Pelczar P, Steglich B, Steurer S, Freiwald E, Woestemeier A, Konczalla L, Tachezy M, et al: Anti-inflammatory microenvironment of esophageal adenocarcinomas negatively impacts survival. Cancer Immunol Immunother. 6:1043–1056. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liou CJ, Chen YL, Yu MC, Yeh KW, Shen SC and Huang WC: Sesamol alleviates airway hyperresponsiveness and oxidative stress in asthmatic mice. Antioxidants (Basel). 9:2952020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Huang J, Ding Y, Zhou J, Gao G, Han H, Zhou J, Ke L, Rao P, Chen T and Zhang L: Nanoparticles isolated from porcine bone soup ameliorated dextran sulfate sodium-induced colitis and regulated gut microbiota in mice. Front Nutr. 9:8214042022. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Guo J, Chang X and Gui S: Painong-san extract alleviates dextran sulfate sodium-induced colitis in mice by modulating gut microbiota, restoring intestinal barrier function and attenuating TLR4/NF-κB signaling cascades. J Pharm Biomed Anal. 209:1145292022. View Article : Google Scholar : PubMed/NCBI | |
Bai J, Zhao J, Al-Ansi W, Wang J, Xue L, Liu J, Wang Y, Fan M, Qian H, Li Y and Wang L: Oat β-glucan alleviates DSS-induced colitis via regulating gut microbiota metabolism in mice. Food Funct. 12:8976–8993. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, et al: A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 15:1016–1022. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tian L, Long F, Hao Y, Li B, Li Y, Tang Y, Li J, Zhao Q, Chen J and Liu M: A cancer associated fibroblasts-related six-gene panel for anti-PD-1 therapy in melanoma driven by weighted correlation network analysis and supervised machine learning. Front Med (Lausanne). 9:8803262022. View Article : Google Scholar : PubMed/NCBI | |
Nyiramana MM, Cho SB, Kim EJ, Kim MJ, Ryu JH, Nam HJ, Kim NG, Park SH, Choi YJ, Kang SS, et al: Sea hare hydrolysate-induced reduction of human non-small cell lung cancer cell growth through regulation of macrophage polarization and non-apoptotic regulated cell death pathways. Cancers (Basel). 12:7262020. View Article : Google Scholar : PubMed/NCBI | |
Dmitrieva-Posocco O, Dzutsev A, Posocco DF, Hou V, Yuan W, Thovarai V, Mufazalov IA, Gunzer M, Shilovskiy IP, Khaitov MR, et al: Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity. 50:166–180.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hahn YI, Saeidi S, Kim SJ, Park SY, Song NY, Zheng J, Kim DH, Lee HB, Han W, Noh DY, et al: STAT3 stabilizes IKKα protein through direct interaction in transformed and cancerous human breast epithelial cells. Cancers (Basel). 13:822020. View Article : Google Scholar : PubMed/NCBI | |
Franz A, Coscia F, Shen C, Charaoui L, Mann M and Sander C: Molecular response to PARP1 inhibition in ovarian cancer cells as determined by mass spectrometry based proteomics. J Ovarian Res. 14:1402021. View Article : Google Scholar : PubMed/NCBI | |
Pan Z, He Y, Zhu W, Xu T, Hu X and Huang P: A dynamic transcription factor signature along the colorectal adenoma-carcinoma sequence in patients with co-occurrent adenoma and carcinoma. Front Oncol. 11:5974472021. View Article : Google Scholar : PubMed/NCBI | |
Icard P, Fournel L, Wu Z, Alifano M and Lincet H: Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci. 44:490–501. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Wei W, Cao Y, Ao T, Huang F, Javed R, Wang X, Fan J, Zhang Y, Liu Y, et al: Gingival mesenchymal stem cell-derived exosomes are immunosuppressive in preventing collagen-induced arthritis. J Cell Mol Med. 26:693–708. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim BR, Ha J, Kang E and Cho S: Regulation of signal transducer and activator of transcription 3 activation by dual-specificity phosphatase3. BMB Rep. 53:335–340. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Dai Z, Zhao X, Wang G and Lai R: Anticarin β inhibits human glioma progression by suppressing cancer stemness via STAT3. Front Oncol. 11:7156732021. View Article : Google Scholar : PubMed/NCBI | |
Shen J, Zhang M, Zhang K, Qin Y, Liu M, Liang S, Chen D and and Peng M: Effect of Angelica polysaccharide on mouse myeloid-derived suppressor cells. Front Immunol. 13:9892302022. View Article : Google Scholar : PubMed/NCBI | |
Al-Warhi T, Al-Karmalawy AA, Elmaaty AA, Alshubramy MA, Abdel-Motaal M, Majrashi TA, Asem M, Nabil A, Eldehna WM and Sharaky M: Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFR WT and EGFR T790M inhibitors. J Enzyme Inhib Med Chem. 38:176–191. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Li S, Guo J, Xu Z, Zheng J and Sun X: Farnesoid X receptor antagonizes Wnt/β-catenin signaling in colorectal tumorigenesis. Cell Death Dis. 11:6402020. View Article : Google Scholar : PubMed/NCBI | |
McPherson J, Hu C, Begum K, Wang W, Lancaster C, Gonzales-Luna AJ, Loveall C, Silverman MH, Alam MJ and Garey KW: Functional and metagenomic evaluation of ibezapolstat for early evaluation of anti-recurrence effects in clostridioides difficile infection. Antimicrob Agents Chemother. 66:e02244212022. View Article : Google Scholar : PubMed/NCBI | |
Bernstein H, Bernstein C, Payne CM and Dvorak K: Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J Gastroenterol. 15:3329–3340. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Ye P, Fang L, Ge S, Huang F, Polverini PJ, Heng W, Zheng L, Hu Q, Yan F and Wang W: Active smoking induces aberrations in digestive tract microbiota of rats. Front Cell Infect Microbiol. 11:7372042021. View Article : Google Scholar : PubMed/NCBI | |
Maarsingh JD, Łaniewski P and Herbst-Kralovetz MM: Immunometabolic and potential tumor-promoting changes in 3D cervical cell models infected with bacterial vaginosis-associated bacteria. Commun Biol. 5:7252022. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Quintero MJ, Rodríguez-Díaz C, Rodríguez-González FJ, Fernández-Castañer A, García-Fuentes E and López-Gómez C: Role of mitochondria in inflammatory bowel diseases: A systematic review. Int J Mol Sci. 24:171242023. View Article : Google Scholar : PubMed/NCBI | |
Huang D, Jing G and Zhu S: Regulation of mitochondrial respiration by hydrogen sulfide. Antioxidants (Basel). 12:16442023. View Article : Google Scholar : PubMed/NCBI | |
Blachier F, Andriamihaja M, Larraufie P, Ahn E, Lan A and Kim E: Production of hydrogen sulfide by the intestinal microbiota and epithelial cells and consequences for the colonic and rectal mucosa. Am J Physiol Gastrointest Liver Physiol. 320:G125–G135. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roudsari LC and West JL: Studying the influence of angiogenesis in in vitro cancer model systems. Adv Drug Deliv Rev. 97:250–259. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Lan R, Xu Y, Zuo J, Han X, Phouthapane V, Luo Z and Miao J: Taurine alleviates streptococcus uberis-induced inflammation by activating autophagy in mammary epithelial cells. Front Immunol. 12:6311132021. View Article : Google Scholar : PubMed/NCBI | |
Karpiński TM, Ożarowski M and Stasiewicz M: Carcinogenic microbiota and its role in colorectal cancer development. Semin Cancer Biol. 86:420–430. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Bian H, Li X, Wu H, Bi Q, Yan Y and Wang Y: Hydrogen sulfide promotes cell proliferation of oral cancer through activation of the COX2/AKT/ERK1/2 axis. Oncol Rep. 35:2825–2832. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kelly D, Yang L and Pei Z: Gut microbiota, fusobacteria, and colorectal cancer. Diseases. 6:1092018. View Article : Google Scholar : PubMed/NCBI | |
Kiziltan T, Baran A, Kankaynar M, Şenol O, Sulukan E, Yildirim S and Ceyhun SB: Effects of the food colorant carmoisine on zebrafish embryos at a wide range of concentrations. Arch Toxicol. 96:1089–1099. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bulanda S and Janoszka B: Consumption of thermally processed meat containing carcinogenic compounds (Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Amines) versus a risk of some cancers in humans and the possibility of reducing their formation by natural food additives-a literature review. Int J Environ Res Public Health. 19:47812022. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Lin X, Li Z, Li Q and Bi K: Quantitative metabolomics for investigating the value of polyamines in the early diagnosis and therapy of colorectal cancer. Oncotarget. 9:4583–4592. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Peng J, Xie X, Yu F, Wang W, Pan Q, Jin H, Huang X, Yu H, Li S, et al: Roles of lncRNA LVBU in regulating urea cycle/polyamine synthesis axis to promote colorectal carcinoma progression. Oncogene. 41:4231–4243. 2022. View Article : Google Scholar : PubMed/NCBI | |
Auvray F, Perrat A, Arimizu Y, Chagneau CV, Bossuet-Greif N, Massip C, Brugère H, Nougayrède JP, Hayashi T, Branchu P, et al: Insights into the acquisition of the pks island and production of colibactin in the Escherichia coli population. Microb Genom. 7:0005792021.PubMed/NCBI | |
Chagneau CV, Payros D, Tang-Fichaux M, Auvray F, Nougayrède JP and Oswald E: The pks island: A bacterial swiss army knife? Colibactin: Beyond DNA damage and cancer. Trends Microbiol. 30:1146–1159. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wami H, Wallenstein A, Sauer D, Stoll M, von Bünau R, Oswald E, Müller R and Dobrindt U: Insights into evolution and coexistence of the colibactin-and yersiniabactin secondary metabolite determinants in enterobacterial populations. Microb Genom. 7:0005772021.PubMed/NCBI | |
Lopès A, Billard E, Casse AH, Villéger R, Veziant J, Roche G, Carrier G, Sauvanet P, Briat A, Pagès F, et al: Colibactin-positive Escherichia coli induce a procarcinogenic immune environment leading to immunotherapy resistance in colorectal cancer. Int J Cancer. 146:3147–3159. 2020. View Article : Google Scholar : PubMed/NCBI | |
Salesse L, Lucas C, Hoang MHT, Sauvanet P, Rezard A, Rosenstiel P, Damon-Soubeyrand C, Barnich N, Godfraind C, Dalmasso G and Nguyen HTT: Colibactin-producing escherichia coli induce the formation of invasive carcinomas in a chronic inflammation-associated mouse model. Cancers (Basel). 13:20602021. View Article : Google Scholar : PubMed/NCBI | |
Dahmus JD, Kotler DL, Kastenberg DM and Kistler CA: The gut microbiome and colorectal cancer: A review of bacterial pathogenesis. J Gastrointest Oncol. 9:769–777. 2018. View Article : Google Scholar : PubMed/NCBI | |
Oh H, Kim J, Park J, Choi Z, Hong J, Jeon BY, Ka H and Hong M: Structure-based molecular characterization of a putative aspartic proteinase from Bacteroides fragilis. Biochem Biophys Res Commun. 738:1505472024. View Article : Google Scholar : PubMed/NCBI | |
Lee CG, Hwang S, Gwon SY, Park C, Jo M, Hong JE and Rhee KJ: Bacteroides fragilis toxin induces intestinal epithelial cell secretion of interleukin-8 by the E-Cadherin/β-Catenin/NF-κB dependent pathway. Biomedicines. 10:8272022. View Article : Google Scholar : PubMed/NCBI | |
Valguarnera E and Wardenburg JB: Good gone bad: One toxin away from disease for bacteroides fragilis. J Mol Biol. 432:765–785. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ko SH, Jeon JI, Woo HA and Kim JM: Bacteroides fragilis enterotoxin upregulates heme oxygenase-1 in dendritic cells via reactive oxygen species-, mitogen-activated protein kinase-, and Nrf2-dependent pathway. World J Gastroenterol. 26:291–306. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bao Y, Tang J, Qian Y, Sun T, Chen H, Chen Z, Sun D, Zhong M, Chen H, Hong J, et al: Long noncoding RNA BFAL1 mediates enterotoxigenic Bacteroides fragilis-related carcinogenesis in colorectal cancer via the RHEB/mTOR pathway. Cell Death Dis. 10:6752019. View Article : Google Scholar : PubMed/NCBI | |
Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL and Casero RA Jr: Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA. 108:15354–15359. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thiele Orberg E, Fan H, Tam AJ, Dejea CM, Destefano Shields CE, Wu S, Chung L, Finard BB, Wu X, Fathi P, et al: The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 10:421–433. 2017. View Article : Google Scholar : PubMed/NCBI | |
Knippel RJ, Drewes JL and Sears CL: The cancer microbiome: recent highlights and knowledge gaps. Cancer Discov. 11:2378–2395. 2021. View Article : Google Scholar : PubMed/NCBI | |
Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, et al: Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 491:254–258. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Wu S, Wang Q, Yuan Q, Li Y, Reboredo-Rodríguez P, Varela-López A, He Z, Wu F, Hu H and Liu X: Oxidative stress amelioration of novel peptides extracted from enzymatic hydrolysates of Chinese pecan cake. Int J Mol Sci. 23:120862022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yang L, Luo Y, Dong L and Chen F: Acrylamide-induced hepatotoxicity through oxidative stress: mechanisms and interventions. Antioxid Redox Signal. 38:1122–1137. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kong Y, Li M, Liang G, Linhai Y, Li S, Zhuang Y, Ruomin L, Xiumei C and Guiqin W: Effects of dietary curcumin inhibit deltamethrin-induced oxidative stress, inflammation and cell apoptosis in Channa argus via Nrf2 and NF-κB signaling pathways. Aquaculture. 540:7367442021. View Article : Google Scholar | |
Luan C, Lu Z, Chen J, Chen M, Zhao R and Li X: Thalidomide alleviates apoptosis, oxidative damage and inflammation induced by pemphigus vulgaris IgG in HaCat cells and neonatal mice through MyD88. Drug Des Devel Ther. 17:2821–2839. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Li Q and Fu X: Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity. Transl Oncol. 12:846–851. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dariya B, Aliya S, Merchant N, Alam A and Nagaraju GP: Colorectal cancer biology, diagnosis, and therapeutic approaches. Crit Rev Oncog. 25:71–94. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Su M, Chen Y, Huang X, Ruan L, Lv Q and Li L: Research progress on the role and mechanism of DNA damage repair in germ cell development. Front Endocrinol (Lausanne). 14:12342802023. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Chen Y and Zhang Y: Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways. J Biosci. 45:842020. View Article : Google Scholar : PubMed/NCBI | |
Lad SB, Upadhyay M, Thorat P, Nair D, Moseley GW, Srivastava S, Pradeepkumar PI and Kondabagil K: Biochemical reconstitution of the mimiviral base excision repair pathway. J Mol Biol. 435:1681882023. View Article : Google Scholar : PubMed/NCBI | |
Triner D, Devenport SN, Ramakrishnan SK, Ma X, Frieler RA, Greenson JK, Inohara N, Nunez G, Colacino JA, Mortensen RM and Shah YM: Neutrophils restrict tumor-associated microbiota to reduce growth and invasion of colon tumors in mice. Gastroenterology. 156:1467–1482. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang JR, Wang ST, Wei MN, Liu K, Fu JW, Xing ZH and Shi Z: Piperlongumine alleviates mouse colitis and colitis-associated colorectal cancer. Front Pharmacol. 11:5868852020. View Article : Google Scholar : PubMed/NCBI | |
Wang CZ, Zhang CF, Luo Y, Yao H, Yu C, Chen L, Yuan J, Huang WH, Wan JY, Zeng J, et al: Baicalein, an enteric microbial metabolite, suppresses gut inflammation and cancer progression in ApcMin/+ mice. Clin Transl Oncol. 22:1013–1022. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahlawat S, Kumar P, Mohan H, Goyal S and Sharma KK: Inflammatory bowel disease: Tri-directional relationship between microbiota, immune system and intestinal epithelium. Crit Rev Microbiol. 47:254–273. 2021. View Article : Google Scholar : PubMed/NCBI | |
Brasiel PGA, Dutra Luquetti SCP, Peluzio MDCG, Novaes RD and Gonçalves RV: Preclinical evidence of probiotics in colorectal carcinogenesis: A systematic review. Dig Dis Sci. 65:3197–3210. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hor YY, Lew LC, Jaafar MH, Lau AS, Ong JS, Kato T, Nakanishi Y, Azzam G, Azlan A, Ohno H and Liong MT: Lactobacillus sp. improved microbiota and metabolite profiles of aging rats. Pharmacol Res. 146:1043122019. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Zhu J, Zhang M, Ge S and Zhao L: Probiotic Lactobacillus salivarius Ren prevent dimethylhydrazine-induced colorectal cancer through protein kinase B inhibition. Appl Microbiol Biotechnol. 104:7377–7389. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reis SK, Socca EAR, de Souza BR, Genaro SC, Durán N and Fávaro WJ: Effects of probiotic supplementation on chronic inflammatory process modulation in colorectal carcinogenesis. Tissue Cell. 87:1022932024. View Article : Google Scholar : PubMed/NCBI | |
Casas-Solís J, Huizar-López MDR, Irecta-Nájera CA, Pita-López ML and Santerre A: immunomodulatory effect of lactobacillus casei in a murine model of colon carcinogenesis. Probiotics Antimicrob Proteins. 12:1012–1024. 2020. View Article : Google Scholar : PubMed/NCBI | |
Agah S, Alizadeh AM, Mosav M, Ranji P, Khavari-Daneshvar H, Ghasemian F, Bahmani S and Tavassoli A: More protection of lactobacillus acidophilus than bifidobacterium bifidum probiotics on azoxymethane-induced mouse colon cancer. Probiotics Antimicrob Proteins. 11:857–864. 2019. View Article : Google Scholar : PubMed/NCBI | |
Samanta S: Potential impacts of prebiotics and probiotics on cancer prevention. Anticancer Agents Med Chem. 22:605–628. 2022. View Article : Google Scholar : PubMed/NCBI | |
Abu-Ghazaleh N, Chua WJ and Gopalan V: Intestinal microbiota and its association with colon cancer and red/processed meat consumption. J Gastroenterol Hepatol. 36:75–88. 2021. View Article : Google Scholar : PubMed/NCBI | |
Śliżewska K, Markowiak-Kopeć P and Śliżewska W: The role of probiotics in cancer prevention. Cancers (Basel). 13:202020. View Article : Google Scholar : PubMed/NCBI | |
Yixia Y, Sripetchwandee J, Chattipakorn N and Chattipakorn SC: The alterations of microbiota and pathological conditions in the gut of patients with colorectal cancer undergoing chemotherapy. Anaerobe. 68:1023612021. View Article : Google Scholar : PubMed/NCBI | |
Freedman JC, Li J, Mi E and McClane BA: Identification of an important orphan histidine kinase for the initiation of sporulation and enterotoxin production by clostridium perfringens type F strain SM101. mBio. 10:e02674–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Qu R, Zhang Y, Jiang C, Zhang Z and Fu W: Progress in the study of colorectal cancer caused by altered gut microbiota after cholecystectomy. Front Endocrinol (Lausanne). 13:8159992022. View Article : Google Scholar : PubMed/NCBI | |
Nowak A, Śliżewska K, Błasiak J and Libudzisz Z: The influence of Lactobacillus casei DN 114 001 on the activity of faecal enzymes and genotoxicity of faecal water in the presence of heterocyclic aromatic amines. Anaerobe. 30:129–136. 2014. View Article : Google Scholar : PubMed/NCBI | |
Verma A and Shukla G: Probiotics lactobacillus rhamnosus GG, lactobacillus acidophilus suppresses DMH-induced procarcinogenic fecal enzymes and preneoplastic aberrant crypt foci in early colon carcinogenesis in sprague dawley rats. Nutr Cancer. 65:84–91. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Zhu C, Ge S, Zhang M, Jiang L, Cui J and Ren F: L actobacillus salivarius Ren prevent the early colorectal carcinogenesis in 1, 2-dimethylhydrazine-induced rat model. J Appl Microbiol. 117:208–216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mohania D, Kansal VK, Sagwal R, Batish VK, Grover S and Shah D: Anticarcinogenic effect of probiotic dahi and piroxicam on DMH-induced colorectal carcinogenesis in wistar rats. American J Cancer Ther Pharm. 1:8–24. 2013. | |
Samara J, Moossavi S, Alshaikh B, Ortega VA, Pettersen VK, Ferdous T, Hoops SL, Soraisham A, Vayalumkal J, Dersch-Mills D, et al: Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host Microbe. 30:696–711.e5. 2022. View Article : Google Scholar : PubMed/NCBI | |
Drago L: Probiotics and colon cancer. Microorganisms. 7:662019. View Article : Google Scholar : PubMed/NCBI | |
Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V and Namdar A: Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol. 234:17127–17143. 2019. View Article : Google Scholar : PubMed/NCBI | |
Derebasi BN, Davran Bulut S, Aksoy Erden B, Sadeghian N, Taslimi P and Celebioglu HU: Effects of p-coumaric acid on probiotic properties of Lactobacillus acidophilus LA-5 and lacticaseibacillus rhamnosus GG. Arch Microbiol. 206:2232024. View Article : Google Scholar : PubMed/NCBI | |
Dos Reis SA, da Conceição LL, Siqueira NP, Rosa DD, da Silva LL and Peluzio MD: Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res. 37:1–19. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ho Do M, Seo YS and Park HY: Polysaccharides: Bowel health and gut microbiota. Crit Rev Food Sci Nutr. 61:1212–1224. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roberfroid M: Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Crit Rev Food Sci Nutr. 33:103–148. 1993. View Article : Google Scholar : PubMed/NCBI | |
Yeung CY, Chiang Chiau JS, Cheng ML, Chan WT, Chang SW, Chang YH, Jiang CB and Lee HC: Modulations of probiotics on gut microbiota in a 5-fluorouracil-induced mouse model of mucositis. J Gastroenterol Hepatol. 35:806–814. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gavzy SJ, Kensiski A, Lee ZL, Mongodin EF, Ma B and Bromberg JS: Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes. 15:22911642023. View Article : Google Scholar : PubMed/NCBI | |
Gyles CL: Shiga toxin-producing Escherichia coli: An overview. J Anim Sci. 85:E45–E62. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pearce SC, Weber GJ, van Sambeek DM, Soares JW, Racicot K and Breault DT: Intestinal enteroids recapitulate the effects of short-chain fatty acids on the intestinal epithelium. PLoS One. 15:e02302312020. View Article : Google Scholar : PubMed/NCBI | |
Ji J and Yang H: Using probiotics as supplementation for Helicobacter pylori antibiotic therapy. Int J Mol Sci. 21:11362020. View Article : Google Scholar : PubMed/NCBI | |
Fayol-Messaoudi D, Berger CN, Coconnier-Polter MH, Liévin-Le Moal V and Servin AL: pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic lactobacilli against salmonella enterica serovar typhimurium. Appl Environ Microbiol. 71:6008–6013. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang S, Lun J, Gao J, Gao X, Gong Z, Wan Y, He X and Cao H: Inhibitory effects of the lactobacillus rhamnosus GG effector Protein HM0539 on inflammatory response through the TLR4/MyD88/NF-ĸB axis. Front Immunol. 11:5514492020. View Article : Google Scholar : PubMed/NCBI | |
Paone P and Cani PD: Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut. 69:2232–2243. 2020. View Article : Google Scholar : PubMed/NCBI | |
Olli KE, Rapp C, O'Connell L, Collins CB, McNamee EN, Jensen O, Jedlicka P, Allison KC, Goldberg MS, Gerich ME, et al: Muc5ac expression protects the colonic barrier in experimental colitis. Inflamm Bowel Dis. 26:1353–1367. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kufe DW: MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment. Carcinogenesis. 41:1173–1183. 2020. View Article : Google Scholar : PubMed/NCBI | |
Martens EC, Neumann M and Desai MS: Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 16:457–470. 2018. View Article : Google Scholar : PubMed/NCBI | |
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N and Blanquet-Diot S: Experimental models to study intestinal microbes-mucus interactions in health and disease. FEMS Microbiol Rev. 43:457–489. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Wang H, Zhou Y, Zhang H, Zhou H and Zhang X: Slimy partners: The mucus barrier and gut microbiome in ulcerative colitis. Exp Mol Med. 53:772–787. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ohland CL and MacNaughton WK: Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 298:G807–G819. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ren C, Zhang Q, de Haan BJ, Faas MM, Zhang H and de Vos P: Protective effects of lactic acid bacteria on gut epithelial barrier dysfunction are toll like receptor 2 and protein kinase C dependent. Food Funct. 11:1230–1234. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wan Z, Wang L, Chen Z, Ma X, Yang X, Zhang J and Jiang Z: In vitro evaluation of swine-derived Lactobacillus reuteri: Probiotic properties and effects on intestinal porcine epithelial cells challenged with enterotoxigenic Escherichia coli K88. J Microbiol Biotechnol. 26:1018–1025. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gu MJ, Song SK, Lee IK, Ko S, Han SE, Bae S, Ji SY, Park BC, Song KD, Lee HK, et al: Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol. Vet Res. 47:252016. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Wang A, Zeng X, Hou C, Liu H and Qiao S: Lactobacillus reuteri I5007 modulates tight junction protein expression in IPEC-J2 cells with LPS stimulation and in newborn piglets under normal conditions. BMC Microbiol. 15:322015. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Jeung W, Choi ID, Jeong JW, Lee DE, Huh CS, Kim GB, Hong SS, Shim JJ, Lee JL, et al: Lactic acid bacteria improves Peyer's patch cell-mediated immunoglobulin A and tight-junction expression in a destructed gut microbial environment. J Microbiol Biotechnol. 26:1035–1045. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q and Elson CO: Adaptive immune education by gut microbiota antigens. Immunology. 154:28–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
Koboziev I, Webb CR, Furr KL and Grisham MB: Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med. 68:122–133. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maldonado Galdeano C, Cazorla SI, Lemme Dumit JM, Vélez E and Perdigón G: Beneficial effects of probiotic consumption on the immune system. Ann Nutr Metab. 74:115–124. 2019. View Article : Google Scholar : PubMed/NCBI | |
Foo NP, Ou Yang H, Chiu HH, Chan HY, Liao CC, Yu CK and Wang YJ: Probiotics prevent the development of 1, 2-dimethylhydrazine (DMH)-induced colonic tumorigenesis through suppressed colonic mucosa cellular proliferation and increased stimulation of macrophages. J Agric Food Chem. 59:13337–13345. 2011. View Article : Google Scholar : PubMed/NCBI | |
Foey A, Habil N, Strachan A and Beal J: Lacticaseibacillus casei strain shirota modulates macrophage-intestinal epithelial cell co-culture barrier integrity, bacterial sensing and inflammatory cytokines. Microorganisms. 10:20872022. View Article : Google Scholar : PubMed/NCBI | |
Wong WY, Chan BD, Sham TT, Lee MM, Chan CO, Chau CT, Mok DK, Kwan YW and Tai WC: Lactobacillus casei strain shirota ameliorates dextran sulfate sodium-induced colitis in mice by increasing taurine-conjugated bile acids and inhibiting NF-κB signaling via stabilization of IκBα. Front Nutr. 9:8168362022. View Article : Google Scholar : PubMed/NCBI | |
Santiago-López L, Hernández-Mendoza A, Vallejo-Cordoba B, Mata-Haro V, Wall-Medrano A and González-Córdova AF: Milk fermented with lactobacillus fermentum ameliorates indomethacin-induced intestinal inflammation: An exploratory study. Nutrients. 11:16102019. View Article : Google Scholar : PubMed/NCBI | |
Muscari I, Fierabracci A, Adorisio S, Moretti M, Cannarile L, Thi Minh Hong V, Ayroldi E and Delfino DV: Glucocorticoids and natural killer cells: A suppressive relationship. Biochem Pharmacol. 198:1149302022. View Article : Google Scholar : PubMed/NCBI | |
Fotiadis CI, Stoidis CN, Spyropoulos BG and Zografos ED: Role of probiotics, prebiotics and synbiotics in chemoprevention for colorectal cancer. World J Gastroenterol. 14:6453–6457. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rossi M, Keshavarzian A and Bishehsari F: Nutraceuticals in colorectal cancer: A mechanistic approach. Eur J Pharmacol. 833:396–402. 2018. View Article : Google Scholar : PubMed/NCBI | |
El-Deeb NM, Yassin AM, Al-Madboly LA and El-Hawiet A: A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer. Microb Cell Fact. 17:292018. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Meng L, Zhang C, Zhang F and Fang Y: Extracellular vesicles of Lacticaseibacillus paracasei PC-H1 induce colorectal cancer cells apoptosis via PDK1/AKT/Bcl-2 signaling pathway. Microbiol Res. 255:1269212021. View Article : Google Scholar : PubMed/NCBI | |
Jin K, Qian C, Lin J and Liu B: Cyclooxygenase-2-Prostaglandin E2 pathway: A key player in tumor-associated immune cells. Front Oncol. 13:10998112023. View Article : Google Scholar : PubMed/NCBI | |
Kang YJ, Jang JY, Kwon YH, Lee JH, Lee S, Park Y, Jung YS, Im E, Moon HR, Chung HY and Kim ND: MHY2245, a sirtuin inhibitor, induces cell cycle arrest and apoptosis in HCT116 human colorectal cancer cells. Int J Mol Sci. 23:15902022. View Article : Google Scholar : PubMed/NCBI | |
Artale S, Grillo N, Lepori S, Butti C, Bovio A, Barzaghi S, Colombo A, Castiglioni E, Barbarini L, Zanlorenzi L, et al: A nutritional approach for the management of chemotherapy-induced diarrhea in patients with colorectal cancer. Nutrients. 14:18012022. View Article : Google Scholar : PubMed/NCBI | |
Burns AJ and Rowland IR: Antigenotoxicity of probiotics and prebiotics on faecal water-induced DNA damage in human colon adenocarcinoma cells. Mutat Res. 551:233–243. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pop OL, Suharoschi R and Gabbianelli R: Biodetoxification and protective properties of probiotics. Microorganisms. 10:12782022. View Article : Google Scholar : PubMed/NCBI | |
Zhang XB and Ohta Y: Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens. J Dairy Sci. 74:1477–1481. 1991. View Article : Google Scholar : PubMed/NCBI | |
Shao X, Xu B, Chen C, Li P and Luo H: The function and mechanism of lactic acid bacteria in the reduction of toxic substances in food: A review. Crit Rev Food Sci Nutr. 62:5950–5963. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nowak A and Libudzisz Z: Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. Eur J Nutr. 48:419–427. 2009. View Article : Google Scholar : PubMed/NCBI | |
Terahara M, Meguro S and Kaneko T: Effects of lactic acid bacteria on binding and absorption of mutagenic heterocyclic amines. Biosci Biotechnol Biochem. 62:197–200. 1998. View Article : Google Scholar : PubMed/NCBI | |
Orrhage K, Sillerström E, Gustafsson JA, Nord CE and Rafter J: Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat Res. 311:239–248. 1994. View Article : Google Scholar : PubMed/NCBI | |
Lázaro Á, Vila-Donat P and Manyes L: Emerging mycotoxins and preventive strategies related to gut microbiota changes: Probiotics, prebiotics, and postbiotics-a systematic review. Food Funct. 15:8998–9023. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Xie M and Wei D: Biological detoxification of mycotoxins: Current status and future advances. Int J Mol Sci. 23:10642022. View Article : Google Scholar : PubMed/NCBI | |
Cuevas-González PF, González-Córdova AF, Vallejo-Cordoba B, Aguilar-Toalá JE, Hall FG, Urbizo-Reyes UC, Liceaga AM, Hernandez-Mendoza A and García HS: Protective role of lactic acid bacteria and yeasts as dietary carcinogen-binding agents-a review. Crit Rev Food Sci Nutr. 62:160–180. 2022. View Article : Google Scholar : PubMed/NCBI | |
El-Nezami HS, Chrevatidis A, Auriola S, Salminen S and Mykkänen H: Removal of common fusarium toxins in vitro by strains of lactobacillus and propionibacterium. Food Addit Contam. 19:680–686. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zoghi A, Khosravi-Darani K and Sohrabvandi S: Surface binding of toxins and heavy metals by probiotics. Mini Rev Med Chem. 14:84–98. 2014. View Article : Google Scholar : PubMed/NCBI | |
Massoud R and Zoghi A: Potential probiotic strains with heavy metals and mycotoxins bioremoval capacity for application in foodstuffs. J Appl Microbiol. 133:1288–1307. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lopez J and Tait SW: Mitochondrial apoptosis: Killing cancer using the enemy within. Br J Cancer. 112:957–962. 2015. View Article : Google Scholar : PubMed/NCBI | |
Su S, Chhabra G, Singh CK, Ndiaye MA and Ahmad N: PLK1 inhibition-based combination therapies for cancer management. Transl Oncol. 16:1013322022. View Article : Google Scholar : PubMed/NCBI | |
Sankarapandian V, Venmathi Maran BA, Rajendran RL, Jogalekar MP, Gurunagarajan S, Krishnamoorthy R, Gangadaran P and Ahn BC: An update on the effectiveness of probiotics in the prevention and treatment of cancer. Life (Basel). 12:592022.PubMed/NCBI | |
Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kiraz Y, Adan A, Kartal Yandim M and Baran Y: Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol. 37:8471–8486. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen HH, Luo CW, Chen YL, Chiang JY, Huang CR, Wang YT, Chen CH, Guo J and Yip HK: Probiotic-facilitated cytokine-induced killer cells suppress peritoneal carcinomatosis and liver metastasis in colorectal cancer cells. Int J Biol Sci. 20:6162–6180. 2024. View Article : Google Scholar : PubMed/NCBI | |
Karimi Ardestani S, Tafvizi F and Tajabadi Ebrahimi M: Heat-killed probiotic bacteria induce apoptosis of HT-29 human colon adenocarcinoma cell line via the regulation of Bax/Bcl2 and caspases pathway. Hum Exp Toxicol. 38:1069–1081. 2019. View Article : Google Scholar : PubMed/NCBI | |
Baghbani-Arani F, Asgary V and Hashemi A: Cell-free extracts of Lactobacillus acidophilus and Lactobacillus delbrueckii display antiproliferative and antioxidant activities against HT-29 cell line. Nutr Cancer. 72:1390–1399. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cotter PD, Ross RP and Hill C: Bacteriocins-a viable alternative to antibiotics? Nat Rev Microbiol. 11:95–105. 2013. View Article : Google Scholar : PubMed/NCBI | |
Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, Ikuta K, Akutsu H, Tanabe H and Kohgo Y: Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun. 7:123652016. View Article : Google Scholar : PubMed/NCBI | |
Thirabunyanon M, Boonprasom P and Niamsup P: Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett. 31:571–576. 2009. View Article : Google Scholar : PubMed/NCBI | |
Khosrovan Z, Haghighat S and Mahdavi M: The probiotic bacteria induce apoptosis in breast and colon cancer cells: An immunostimulatory effect. Immunoregulation. 3:37–50. 2020. View Article : Google Scholar | |
Alshuail N, Alehaideb Z, Alghamdi S, Suliman R, Al-Eidi H, Ali R, Barhoumi T, Almutairi M, Alwhibi M, Alghanem B, et al: Achillea fragrantissima (Forssk.) Sch.Bip flower dichloromethane extract exerts anti-proliferative and pro-apoptotic properties in human triple-negative breast cancer (MDA-MB-231) cells: In vitro and in silico studies. Pharmaceuticals (Basel). 15:10602022. View Article : Google Scholar : PubMed/NCBI | |
Asoudeh-Fard A, Barzegari A, Dehnad A, Bastani S, Golchin A and Omidi Y: Lactobacillus plantarum induces apoptosis in oral cancer KB cells through upregulation of PTEN and downregulation of MAPK signalling pathways. Bioimpacts. 7:193–198. 2017. View Article : Google Scholar : PubMed/NCBI | |
Isazadeh A, Hajazimian S, Shadman B, Safaei S, Bedoustani AB, Chavoshi R, Shanehbandi D, Mashayekhi M, Nahaei M and Baradaran B: Anti-cancer effects of probiotic lactobacillus acidophilus for colorectal cancer cell line caco-2 through apoptosis induction. Pharm Sci. 27:262–267. 2021. View Article : Google Scholar | |
Yavari M and Ahmadizadeh C: Effect of the cellular extract of co-cultured lactobacillus casei on BAX and Human β-Defensin 2 genes expression in HT29 cells. Intern Med Today. 26:364–381. 2020. | |
Małaczewska J and Kaczorek-Łukowska E: Nisin-A lantibiotic with immunomodulatory properties: A review. Peptides. 137:1704792021. View Article : Google Scholar : PubMed/NCBI | |
Singh A, Alexander SG and Martin S: Gut microbiome homeostasis and the future of probiotics in cancer immunotherapy. Front Immunol. 14:11144992023. View Article : Google Scholar : PubMed/NCBI | |
Liu YC, Wu CR and Huang TW: Preventive effect of probiotics on oral mucositis induced by cancer treatment: A systematic review and meta-analysis. Int J Mol Sci. 23:132682022. View Article : Google Scholar : PubMed/NCBI | |
Nazir Y, Hussain SA, Abdul Hamid A and Song Y: Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. Biomed Res Int. 2018:34284372018. View Article : Google Scholar : PubMed/NCBI | |
Arora M, Baldi A, Kapila N, Bhandari S and Jeet K: Impact of probiotics and prebiotics on colon cancer: Mechanistic insights and future approaches. Curr Cancer Ther Rev. 15:27–36. 2019. View Article : Google Scholar | |
Hou H, Chen D, Zhang K, Zhang W, Liu T, Wang S, Dai X, Wang B, Zhong W and Cao H: Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Lett. 526:225–235. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Wang H and Zhu MJ: A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta. 196:249–254. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wong JM, De Souza R, Kendall CW, Emam A and Jenkins DJ: Colonic health: Fermentation and short chain fatty acids. J Clin Gastroenterol. 40:235–243. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bhogoju S and Nahashon S: Recent advances in probiotic application in animal health and nutrition: A review. Agriculture. 12:3042022. View Article : Google Scholar | |
Encarnação JC, Abrantes AM, Pires AS and Botelho MF: Revisit dietary fiber on colorectal cancer: Butyrate and its role on prevention and treatment. Cancer Metastasis Rev. 34:465–478. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q and Chen W: Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Fact. 19:232020. View Article : Google Scholar : PubMed/NCBI | |
Lu SY, Liu Y, Tang S, Zhang W, Yu Q, Shi C and Cheong KL: Gracilaria lemaneiformis polysaccharides alleviate colitis by modulating the gut microbiota and intestinal barrier in mice. Food Chem X. 13:1001972022. View Article : Google Scholar : PubMed/NCBI | |
Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O and Laszczyńska M: Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol. 66:1–12. 2019.PubMed/NCBI | |
Yoo JY, Groer M, Dutra SVO, Sarkar A and McSkimming DI: Gut microbiota and immune system interactions. Microorganisms. 8:15872020. View Article : Google Scholar : PubMed/NCBI | |
Woo V and Alenghat T: Epigenetic regulation by gut microbiota. Gut Microbes. 14:20224072022. View Article : Google Scholar : PubMed/NCBI | |
Ruzic D, Djoković N, Srdić-Rajić T, Echeverria C, Nikolic K and Santibanez JF: Targeting histone deacetylases: Opportunities for cancer treatment and chemoprevention. Pharmaceutics. 14:2092022. View Article : Google Scholar : PubMed/NCBI | |
Faghfoori Z, Gargari BP, Gharamaleki AS, Bagherpour H and Khosroushahi AY: Cellular and molecular mechanisms of probiotics effects on colorectal cancer. J Funct Foods. 18:463–472. 2015. View Article : Google Scholar | |
Sanaei M and Kavoosi F: Effect of sodium butyrate on p16INK4a, p14ARF, p15INK4b, Class I HDACs (HDACs 1, 2, 3) Class II HDACs (HDACs 4, 5, 6), Cell growth inhibition and apoptosis induction in pancreatic cancer AsPC-1 and colon cancer HCT-116 cell lines. Asian Pac J Cancer Prev. 23:795–802. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chai L, Luo Q, Cai K, Wang K and Xu B: Reduced fecal short-chain fatty acids levels and the relationship with gut microbiota in IgA nephropathy. BMC Nephrol. 22:2092021. View Article : Google Scholar : PubMed/NCBI | |
Piotrowska M, Binienda A and Fichna J: The role of fatty acids in Crohn's disease pathophysiology-An overview. Mol Cell Endocrinol. 538:1114482021. View Article : Google Scholar : PubMed/NCBI | |
Haase S, Haghikia A, Wilck N, Müller DN and Linker RA: Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 154:230–238. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ni D, Tan J, Niewold P, Spiteri AG, Pinget GV, Stanley D, King NJC and Macia L: Impact of dietary fiber on west nile virus infection. Front Immunol. 13:7844862022. View Article : Google Scholar : PubMed/NCBI | |
Shanmugam G, Rakshit S and Sarkar K: HDAC inhibitors: Targets for tumor therapy, immune modulation and lung diseases. Transl Oncol. 16:1013122022. View Article : Google Scholar : PubMed/NCBI | |
Lee SY, Kang JH, Kim JH, Jeong JW, Kim HW, Oh DH, Yoon SH and Hur SJ: Relationship between gut microbiota and colorectal cancer: Probiotics as a potential strategy for prevention. Food Res Int. 156:1113272022. View Article : Google Scholar : PubMed/NCBI | |
Althagafi HA: The potential anticancer potency of kolaviron on colorectal adenocarcinoma (Caco-2) cells. Anticancer Agents Med Chem. 24:1097–1108. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Li S, Qiu X, Cong J, Zhou J and Miu W: Curcumin inhibits cell viability and increases apoptosis of SW620 human colon adenocarcinoma cells via the caudal type homeobox-2 (CDX2)/Wnt/β-catenin pathway. Med Sci Monit. 25:7451–7458. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Deng W, Xu HZ, Zhou C, Zhang F, Chen J, Bao Q, Zhou X, Liu M, Li J and Liu C: Short-chain fatty acids reprogram metabolic profiles with the induction of reactive oxygen species production in human colorectal adenocarcinoma cells. Comput Struct Biotechnol J. 21:1606–1620. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zeng H, Hamlin SK, Safratowich BD, Cheng WH and Johnson LK: Superior inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis: Linking dietary fiber to cancer prevention. Nutr Res. 83:63–72. 2020. View Article : Google Scholar : PubMed/NCBI | |
Aziz T, Sarwar A, Daudzai Z, Naseeb J, Din JU, Aftab U, Saidal A, Ghani M, Khan AA, Naz S, et al: Conjugated fatty acids (CFAS) production via various bacterial strains and their applications. A review. J Chil Chem Soc. 67:5445–5452. 2022. View Article : Google Scholar | |
Wu C, Chen H, Mei Y, Yang B, Zhao J, Stanton C and Chen W: Advances in research on microbial conjugated linoleic acid bioconversion. Prog Lipid Res. 93:1012572024. View Article : Google Scholar : PubMed/NCBI | |
Liu XX, Zhang HY, Song X, Yang Y, Xiong ZQ, Xia YJ and Ai LZ: Reasons for the differences in biotransformation of conjugated linoleic acid by Lactobacillus plantarum. J Dairy Sci. 104:11466–11473. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qian Y, Chun ZJ, Liu ZY and Xu L: Probiotics in gastrointestinal cancer: Antitumoral effects and molecular mechanisms of action. Zhonghua Nei Ke Za Zhi. 61:1167–1171. 2022.(In Chinese). PubMed/NCBI | |
Cho HJ, Kim WK, Kim EJ, Jung KC, Park S, Lee HS, Tyner AL and Park JH: Conjugated linoleic acid inhibits cell proliferation and ErbB3 signaling in HT-29 human colon cell line. Am J Physiol Gastrointest Liver Physiol. 284:G996–G1005. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Ma W, Zhao J, Stanton C, Ross RP, Zhang H, Chen W and Yang B: Lactobacillus plantarum ameliorates colorectal cancer by ameliorating the intestinal barrier through the CLA-PPAR-γ axis. J Agric Food Chem. 72:19766–19785. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dachev M, Bryndová J, Jakubek M, Moučka Z and Urban M: The effects of conjugated linoleic acids on cancer. Processes. 9:4542021. View Article : Google Scholar | |
Shahzad MMK, Felder M, Ludwig K, Van Galder HR, Anderson ML, Kim J, Cook ME, Kapur AK and Patankar MS: Trans10, cis12 conjugated linoleic acid inhibits proliferation and migration of ovarian cancer cells by inducing ER stress, autophagy, and modulation of Src. PLoS One. 13:e01895242018. View Article : Google Scholar : PubMed/NCBI | |
Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, Ares I, Lopez-Torres B, Martínez M, Maximiliano JE, et al: Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? Food Res Int. 172:1131582023. View Article : Google Scholar : PubMed/NCBI | |
Saber A, Alipour B, Faghfoori Z and Yari Khosroushahi A: Cellular and molecular effects of yeast probiotics on cancer. Crit Rev Microbiol. 43:96–115. 2017. View Article : Google Scholar : PubMed/NCBI | |
Basak S and Duttaroy AK: Conjugated linoleic acid and its beneficial effects in obesity, cardiovascular disease, and cancer. Nutrients. 12:19132020. View Article : Google Scholar : PubMed/NCBI | |
Mei Y, Chen H, Yang B, Zhao J, Zhang H and Chen W: Research progress on conjugated linoleic acid bio-conversion in Bifidobacterium. Int J Food Microbiol. 369:1095932022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yang B, Ross RP, Jin Y, Stanton C, Zhao J, Zhang H and Chen W: Orally administered CLA ameliorates DSS-induced colitis in mice via intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokine and gut microbiota modulation. J Agric Food Chem. 67:13282–13298. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cruz BCS, Sarandy MM, Messias AC, Gonçalves RV, Ferreira CLLF and Peluzio MCG: Preclinical and clinical relevance of probiotics and synbiotics in colorectal carcinogenesis: A systematic review. Nutr Rev. 78:667–687. 2020. View Article : Google Scholar : PubMed/NCBI | |
Żółkiewicz J, Marzec A, Ruszczyński M and Feleszko W: Postbiotics-A step beyond pre- and probiotics. Nutrients. 12:21892020. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Yang C, Ren K, Xu M, Pan C, Ye X and Li L: Modulation of gut microbiota by probiotics to improve the efficacy of immunotherapy in hepatocellular carcinoma. Front Immunol. 15:15049482024. View Article : Google Scholar : PubMed/NCBI | |
De Souza JB, Brelaz-de-Castro MCA and Cavalcanti IMF: Strategies for the treatment of colorectal cancer caused by gut microbiota. Life Sci. 290:1202022022. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Jia Y, Wu R, Chen Z and Yan R: Human gut bacterial β-glucuronidase inhibition: An emerging approach to manage medication therapy. Biochem Pharmacol. 190:1145662021. View Article : Google Scholar : PubMed/NCBI | |
Josephy PD and Allen-Vercoe E: Reductive metabolism of azo dyes and drugs: Toxicological implications. Food Chem Toxicol. 178:1139322023. View Article : Google Scholar : PubMed/NCBI | |
Molska M and Reguła J: Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients. 11:24532019. View Article : Google Scholar : PubMed/NCBI | |
Nowak A, Paliwoda A and Błasiak J: Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives. Crit Rev Food Sci Nutr. 59:3456–3467. 2019. View Article : Google Scholar : PubMed/NCBI | |
De Roos NM and Katan MB: Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: A review of papers published between 1988 and 1998. Am J Clin Nutr. 71:405–411. 2000. View Article : Google Scholar : PubMed/NCBI | |
Jacquier EF, van de Wouw M, Nekrasov E, Contractor N, Kassis A and Marcu D: Local and systemic effects of bioactive food ingredients: Is there a role for functional foods to prime the gut for resilience? Foods. 13:7392024. View Article : Google Scholar : PubMed/NCBI | |
Phannasorn W, Pharapirom A, Thiennimitr P, Guo H, Ketnawa S and Wongpoomchai R: Enriched riceberry bran oil exerts chemopreventive properties through anti-inflammation and alteration of gut microbiota in carcinogen-induced liver and colon carcinogenesis in rats. Cancers (Basel). 14:43582022. View Article : Google Scholar : PubMed/NCBI | |
Walia S, Kamal R, Kanwar SS and Dhawan DK: Hepato-protective role of chemo-preventive probiotics during DMH-induced CRC in rats. J Biochem Mol Toxicol. 35:e227882021. View Article : Google Scholar : PubMed/NCBI | |
Vougiouklaki D, Tsironi T, Tsantes AG, Tsakali E, Van Impe JFM and Houhoula D: Probiotic properties and antioxidant activity in vitro of lactic acid bacteria. Microorganisms. 11:12642023. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Huang R, Niu Y, Zhang P, Li Y and Zhang W: Chemical characteristics, antioxidant capacity, bacterial community, and metabolite composition of mulberry silage ensiling with lactic acid bacteria. Front Microbiol. 15:13632562024. View Article : Google Scholar : PubMed/NCBI | |
Mobasherpour P, Yavarmanesh M and Edalatian Dovom MR: Antitumor properties of traditional lactic acid bacteria: Short-chain fatty acid production and interleukin 12 induction. Heliyon. 10:e361832024. View Article : Google Scholar : PubMed/NCBI | |
Tang C and Lu Z: Health promoting activities of probiotics. J Food Biochem. 43:e129442019. View Article : Google Scholar : PubMed/NCBI | |
Martínez FG, Cuencas Barrientos ME, Mozzi F and Pescuma M: Survival of selenium-enriched lactic acid bacteria in a fermented drink under storage and simulated gastro-intestinal digestion. Food Res Int. 123:115–124. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tsivileva O, Shaternikov A and Evseeva N: Basidiomycetes polysaccharides regulate growth and antioxidant defense system in wheat. Int J Mol Sci. 25:68772024. View Article : Google Scholar : PubMed/NCBI | |
Salimi F and Farrokh P: Recent advances in the biological activities of microbial exopolysaccharides. World J Microbiol Biotechnol. 39:2132023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Xiao Y, Wang H, Zhang H, Chen W and Lu W: Lactic acid bacteria-derived exopolysaccharide: Formation, immunomodulatory ability, health effects, and structure-function relationship. Microbiol Res. 274:1274322023. View Article : Google Scholar : PubMed/NCBI | |
Adesulu-Dahunsi AT, Sanni AI and Jeyaram K: Production, characterization and in vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT. 87:432–442. 2018. View Article : Google Scholar | |
Dougherty MW and Jobin C: Intestinal bacteria and colorectal cancer: Etiology and treatment. Gut Microbes. 15:21850282023. View Article : Google Scholar : PubMed/NCBI | |
Kang X, Liu C, Ding Y, Ni Y, Ji F, Lau HCH, Jiang L, Sung JJ, Wong SH and Yu J: Roseburia intestinalis generated butyrate boosts anti-PD-1 efficacy in colorectal cancer by activating cytotoxic CD8+ T cells. Gut. 72:2112–2122. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Liao Y, Wei C, Ma Y, Wang F, Chen Y, Zhao B, Ji H, Wang D and Tang D: Potential ability of probiotics in the prevention and treatment of colorectal cancer. Clin Med Insights Oncol. 17:117955492311882252023. View Article : Google Scholar : PubMed/NCBI | |
Jain S, Purohit A, Nema P, Vishwakarma H, Qureshi A and kumar JP: Pathways of targeted therapy for colorectal cancer. J Drug Delivery Ther. 12:217–221. 2022. View Article : Google Scholar | |
Chrysostomou D, Roberts LA, Marchesi JR and Kinross JM: Gut Microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy. Gastroenterology. 164:198–213. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lu L, Dong J, Liu Y, Qian Y, Zhang G, Zhou W, Zhao A, Ji G and Xu H: New insights into natural products that target the gut microbiota: Effects on the prevention and treatment of colorectal cancer. Front Pharmacol. 13:9647932022. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S and Li J: Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology. 20:3712022. View Article : Google Scholar : PubMed/NCBI | |
Kouidhi S, Zidi O, Belkhiria Z, Rais H, Ayadi A, Ben Ayed F, Mosbah A, Cherif A and El Gaaied ABA: Gut microbiota, an emergent target to shape the efficiency of cancer therapy. Explor Target Antitumor Ther. 4:240–265. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mahdy MS, Azmy AF, Dishisha T, Mohamed WR, Ahmed KA, Hassan A, Aidy SE and El-Gendy AO: Irinotecan-gut microbiota interactions and the capability of probiotics to mitigate Irinotecan-associated toxicity. BMC Microbiol. 23:532023. View Article : Google Scholar : PubMed/NCBI | |
Ren Z, Chen S, Lv H, Peng L, Yang W, Chen J, Wu Z and Wan C: Effect of Bifidobacterium animalis subsp. lactis SF on enhancing the tumor suppression of irinotecan by regulating the intestinal flora. Pharmacol Res. 184:1064062022. View Article : Google Scholar : PubMed/NCBI | |
Cai B, Pan J, Chen H, Chen X, Ye Z, Yuan H, Sun H and Wan P: Oyster polysaccharides ameliorate intestinal mucositis and improve metabolism in 5-fluorouracil-treated S180 tumour-bearing mice. Carbohydr Polym. 256:1175452021. View Article : Google Scholar : PubMed/NCBI | |
Capurso L: Thirty years of Lactobacillus rhamnosus GG: A review. J Clin Gastroenterol. 53:S1–S41. 2019. View Article : Google Scholar : PubMed/NCBI | |
He Y, Fu L, Li Y, Wang W, Gong M, Zhang J, Dong X, Huang J, Wang Q, Mackay CR, et al: Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33:988–1000. e72021. View Article : Google Scholar : PubMed/NCBI | |
He Y, Ling Y, Zhang Z, Mertens RT, Cao Q, Xu X, Guo K, Shi Q, Zhang X, Huo L, et al: Butyrate reverses ferroptosis resistance in colorectal cancer by inducing c-Fos-dependent xCT suppression. Redox Biol. 65:1028222023. View Article : Google Scholar : PubMed/NCBI | |
Khorashadizadeh S, Abbasifar S, Yousefi M, Fayedeh F and Moodi Ghalibaf A: The role of microbiome and probiotics in chemo-radiotherapy-induced diarrhea: A narrative review of the current evidence. Cancer Rep (Hoboken). 7:e700292024. View Article : Google Scholar : PubMed/NCBI | |
Moraitis I, Guiu J and Rubert J: Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends Endocrinol Metab. 34:489–501. 2023. View Article : Google Scholar : PubMed/NCBI | |
Long L, Zhang Y, Zang J, Liu P, Liu W, Sun C, Tian D, Li P, Tian J and Xiao J: Investigating the relationship between postoperative radiotherapy and intestinal flora in rectal cancer patients: A study on efficacy and radiation enteritis. Front Oncol. 14:14084362024. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Mercado VJ, Henderson WA, Sarkar A, Lim J, Saligan LN, Berk L, Dishaw L, McMillan S, Groer M, Sepehri F and Melkus GD: Changes in gut microbiome associated with co-occurring symptoms development during chemo-radiation for rectal cancer: A proof of concept study. Biol Res Nurs. 23:31–41. 2021. View Article : Google Scholar : PubMed/NCBI | |
Al-Qadami G, Van Sebille Y, Le H and Bowen J: Gut microbiota: implications for radiotherapy response and radiotherapy-induced mucositis. Expert Rev Gastroenterol Hepatol. 13:485–496. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun CH, Li BB, Wang B, Zhao J, Zhang XY, Li TT, Li WB, Tang D, Qiu MJ, Wang XC, et al: The role of Fusobacterium nucleatum in colorectal cancer: From carcinogenesis to clinical management. Chronic Dis Transl Med. 5:178–187. 2019.PubMed/NCBI | |
Jin Y, Wang J and Wang Y: Unraveling the complexity of radiotherapy- and chemotherapy-induced oral mucositis: Insights into pathogenesis and intervention strategies. Support Care Cancer. 33:1952025. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhang J, Zhang Y, Xue J, Wang H, Tan X, Jiao X and Jiang H: The recovery of intestinal barrier function and changes in oral microbiota after radiation therapy injury. Front Cell Infect Microbiol. 13:12886662024. View Article : Google Scholar : PubMed/NCBI | |
Chen QY, Tian HL, Yang B, Lin ZL, Zhao D, Ye C, Zhang XY, Qin HL and Li N: Effect of intestinal preparation on the efficacy and safety of fecal microbiota transplantation treatment. Zhonghua Wei Chang Wai Ke Za Zhi. 23:48–55. 2020.(In Chinese). PubMed/NCBI | |
Al Zein M, Boukhdoud M, Shammaa H, Mouslem H, El Ayoubi LM, Iratni R, Issa K, Khachab M, Assi HI, Sahebkar A and Eid AH: Immunotherapy and immunoevasion of colorectal cancer. Drug Discov Today. 28:1036692023. View Article : Google Scholar : PubMed/NCBI | |
Sun BL: Current microsatellite instability testing in management of colorectal cancer. Clin Colorectal Cancer. 20:e12–e20. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo R, Li J, Hu J, Fu Q, Yan Y, Xu S, Wang X and Jiao F: Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int Immunopharmacol. 120:1104172023. View Article : Google Scholar : PubMed/NCBI | |
Salek Farrokhi A, Darabi N, Yousefi B, Askandar RH, Shariati M and Eslami M: Is it true that gut microbiota is considered as panacea in cancer therapy? J Cell Physiol. 234:14941–14950. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Wang S, Zheng B, Qiu X, Wang H and Chen L: Modulation of gut microbiota to enhance effect of checkpoint inhibitor immunotherapy. Front Immunol. 12:6691502021. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Wang D, Zhang Z, Xian J and Bai X: Effect of gut microbiota-derived metabolites on immune checkpoint inhibitor therapy: Enemy or friend? Molecules. 27:47992022. View Article : Google Scholar : PubMed/NCBI | |
Xie Y and Liu F: The role of the gut microbiota in tumor, immunity, and immunotherapy. Front Immunol. 15:14109282024. View Article : Google Scholar : PubMed/NCBI | |
Aghamajidi A and Maleki Vareki S: The effect of the gut microbiota on systemic and anti-tumor immunity and response to systemic therapy against cancer. Cancers (Basel). 14:35632022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Yang H and Li Y: The triple interactions between gut microbiota, mycobiota and host immunity. Crit Rev Food Sci Nutr. 63:11604–11624. 2023. View Article : Google Scholar : PubMed/NCBI | |
Noguera-Fernández N, Candela-González J and Orenes-Piñero E: Probiotics, prebiotics, fecal microbiota transplantation, and dietary patterns in inflammatory bowel disease. Mol Nutr Food Res. 68:e24004292024. View Article : Google Scholar : PubMed/NCBI | |
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, et al: Fecal microbiota transplantation: Current challenges and future landscapes. Clin Microbiol Rev. 37:e00060222024. View Article : Google Scholar : PubMed/NCBI | |
Selvamani S, Mehta V, Ali El Enshasy H, Thevarajoo S, El Adawi H, Zeini I, Pham K, Varzakas T and Abomoelak B: Efficacy of probiotics-based interventions as therapy for inflammatory bowel disease: A recent update. Saudi J Biol Sci. 29:3546–3567. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang JW, Kuo CH, Kuo FC, Wang YK, Hsu WH, Yu FJ, Hu HM, Hsu PI, Wang JY and Wu DC: Fecal microbiota transplantation: Review and update. J Formos Med Assoc. 118 (Suppl 1):S23–S31. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Li XX, Han X, Chen BX, Zhang XH, Gao S, Xu DQ, Wang Y, Gao ZK, Yu L, et al: Fecal microbiota transplantation inhibits colorectal cancer progression: Reversing intestinal microbial dysbiosis to enhance anti-cancer immune responses. Front Microbiol. 14:11268082023. View Article : Google Scholar : PubMed/NCBI | |
Chang CW, Lee HC, Li LH, Chiang Chiau JS, Wang TE, Chuang WH, Chen MJ, Wang HY, Shih SC, Liu CY, et al: Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer. Int J Mol Sci. 21:3862020. View Article : Google Scholar : PubMed/NCBI | |
Pi Y, Wu Y, Zhang X, Lu D, Han D, Zhao J, Zheng X, Zhang S, Ye H, Lian S, et al: Gut microbiota-derived ursodeoxycholic acid alleviates low birth weight-induced colonic inflammation by enhancing M2 macrophage polarization. Microbiome. 11:192023. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Gao Y, Liu K, Tang Y, Man Y and Wu H: Gut microbial and metabolomics profiles reveal the potential mechanism of fecal microbiota transplantation in modulating the progression of colitis-associated colorectal cancer in mice. J Transl Med. 22:10282024. View Article : Google Scholar : PubMed/NCBI | |
Wu R, Xiong R, Li Y, Chen J and Yan R: Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun. 141:1030622023. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Cao C, Ren Y, Weng S, Liu L, Guo C, Wang L, Han X, Ren J and Liu Z: Antitumor effects of fecal microbiota transplantation: Implications for microbiome modulation in cancer treatment. Front Immunol. 13:9494902022. View Article : Google Scholar : PubMed/NCBI | |
Perillo F, Amoroso C, Strati F, Giuffrè MR, Díaz-Basabe A, Lattanzi G and Facciotti F: Gut microbiota manipulation as a tool for colorectal cancer management: Recent advances in its use for therapeutic purposes. Int J Mol Sci. 21:53892020. View Article : Google Scholar : PubMed/NCBI |