Repurposing antipsychotics as glioblastoma therapeutics: Potentials and challenges (Review)
- Authors:
- Jin‑Ku Lee
- Do‑Hyun Nam
- Jeongwu Lee
-
Affiliations: Cancer Stem Cell Research Center, Department of Neurosurgery, Samsung Medical Center and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 135‑710, Republic of Korea, Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA - Published online on: January 7, 2016 https://doi.org/10.3892/ol.2016.4074
- Pages: 1281-1286
This article is mentioned in:
Abstract
Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 15(Suppl 2): ii1–ii56. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ostermann S, Csajka C, Buclin T, Leyvraz S, Lejeune F, Decosterd LA and Stupp R: Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res. 10:3728–3736. 2004. View Article : Google Scholar : PubMed/NCBI | |
Laperriere N, Zuraw L and Cairncross G: Cancer Care Ontario Practice Guidelines Initiative Neuro-Oncology Disease Site Group: Radiotherapy for newly diagnosed malignant glioma in adults: A systematic review. Radiother Oncol. 64:259–273. 2002. View Article : Google Scholar : PubMed/NCBI | |
Stupp R, Mason WP, van den Bent MJ, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ohka F, Natsume A and Wakabayashi T: Current trends in targeted therapies for glioblastoma multiforme. Neurol Res Int. 2012:8784252012. View Article : Google Scholar : PubMed/NCBI | |
Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, et al: Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA. 108:3749–3754. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, et al: Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 370:709–722. 2014. View Article : Google Scholar : PubMed/NCBI | |
Uhm JH, Ballman KV, Wu W, Giannini C, Krauss JC, Buckner JC, James CD, Scheithauer BW, Behrens RJ, Flynn PJ, et al: Phase II evaluation of gefitinib in patients with newly diagnosed Grade 4 astrocytoma: Mayo/North central cancer treatment group study N0074. Int J Radiat Oncol Biol Phys. 80:347–353. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lau D, Magill ST and Aghi MK: Molecularly targeted therapies for recurrent glioblastoma: Current and future targets. Neurosurg Focus. 37:E152014. View Article : Google Scholar : PubMed/NCBI | |
Melosky B: Review of EGFR TKIs in metastatic NSCLC, including ongoing trials. Front Oncol. 4:2442014. View Article : Google Scholar : PubMed/NCBI | |
Wen PY, Yung WK, Lamborn KR, Dahia PL, Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, et al: Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American brain tumor consortium study 99-08. Clin Cancer Res. 12:4899–4907. 2006. View Article : Google Scholar : PubMed/NCBI | |
Razis E, Selviaridis P, Labropoulos S, Norris JL, Zhu MJ, Song DD, Kalebic T, Torrens M, Kalogera-Fountzila A, Karkavelas G, et al: Phase II study of neoadjuvant imatinib in glioblastoma: Evaluation of clinical and molecular effects of the treatment. Clin Cancer Res. 15:6258–6266. 2009. View Article : Google Scholar : PubMed/NCBI | |
Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, et al: Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 344:1031–1037. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lu-Emerson C, Norden AD, Drappatz J, Quant EC, Beroukhim R, Ciampa AS, Doherty LM, Lafrankie DC, Ruland S and Wen PY: Retrospective study of dasatinib for recurrent glioblastoma after bevacizumab failure. J Neurooncol. 104:287–291. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pitz MW, Desai A, Grossman SA and Blakeley JO: Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J Neurooncol. 104:629–638. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ashburn TT and Thor KB: Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 3:673–683. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yaryura-Tobias JA, Patito JA, Mizrahi J, Roger RV and Cappelletti SR: The action of pimozide on acute psychosis. Acta Psychiatr Belg. 74:421–429. 1974.PubMed/NCBI | |
Lapidus KA, Soleimani L and Murrough JW: Novel glutamatergic drugs for the treatment of mood disorders. Neuropsychiatr Dis Treat. 9:1101–1112. 2013.PubMed/NCBI | |
Foster AC and Kemp JA: Glutamate- and GABA-based CNS therapeutics. Curr Opin Pharmacol. 6:7–17. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg G: The mechanisms of action of valproate in neuropsychiatric disorders: Can we see the forest for the trees? Cell Mol Life Sci. 64:2090–2103. 2007. View Article : Google Scholar : PubMed/NCBI | |
Javaid JI: Clinical pharmacokinetics of antipsychotics. J Clin Pharmacol. 34:286–295. 1994. View Article : Google Scholar : PubMed/NCBI | |
Barak Y, Achiron A, Mandel M, Mirecki I and Aizenberg D: Reduced cancer incidence among patients with schizophrenia. Cancer. 104:2817–2821. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tran E, Rouillon F, Loze JY, Casadebaig F, Philippe A, Vitry F and Limosin F: Cancer mortality in patients with schizophrenia: an 11-year prospective cohort study. Cancer. 115:3555–3562. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chou FH, Tsai KY, Su CY and Lee CC: The incidence and relative risk factors for developing cancer among patients with schizophrenia: A nine-year follow-up study. Schizophr Res. 129:97–103. 2011. View Article : Google Scholar : PubMed/NCBI | |
Damjanović A, Ivković M, Jasović-Gasić M and Paunović V: Comorbidity of schizophrenia and cancer: Clinical recommendations for treatment. Psychiatr Danub. 18:55–60. 2006.PubMed/NCBI | |
du Pan RM and Muller C: Cancer mortality in patients of psychiatric hospitals. Schweiz Med Wochenschr. 107:597–604. 1977.(In French). PubMed/NCBI | |
Grinshpoon A, Barchana M, Ponizovsky A, et al: Cancer in schizophrenia: Is the risk higher or lower? Schizophr Res. 73:333–341. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lichtermann D: Cancer risk in parents of patients with schizophrenia. Am J Psychiatry. 162:1024.author reply 1024–1026. 2005. | |
Goldacre MJ, Kurina LM, Wotton CJ, Yeates D and Seagroat V: Schizophrenia and cancer: An epidemiological study. Br J Psychiatry. 187:334–338. 2005. View Article : Google Scholar : PubMed/NCBI | |
Michaelis M, Doerr HW and Cinatl J Jr: Valproic acid as anti-cancer drug. Curr Pharm Des. 13:3378–3393. 2007. View Article : Google Scholar : PubMed/NCBI | |
Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E and Herrera LA: Valproic acid as epigenetic cancer drug: Preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev. 34:206–222. 2008. View Article : Google Scholar : PubMed/NCBI | |
Reynolds MF, Sisk EC and Rasgon NL: Valproate and neuroendocrine changes in relation to women treated for epilepsy and bipolar disorder: A review. Curr Med Chem. 14:2799–2812. 2007. View Article : Google Scholar : PubMed/NCBI | |
Driever PH, Knupfer MM, Cinatl J and Wolff JE: Valproic acid for the treatment of pediatric malignant glioma. Klin Padiatr. 211:323–328. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sami S, Höti N, Xu HM, Shen Z and Huang X: Valproic acid inhibits the growth of cervical cancer both in vitro and in vivo. J Biochem. 144:357–362. 2008. View Article : Google Scholar : PubMed/NCBI | |
Strobl JS, Melkoumian Z, Peterson VA and Hylton H: The cell death response to gamma-radiation in MCF-7 cells is enhanced by a neuroleptic drug, pimozide. Breast Cancer Res Treat. 51:83–95. 1998. View Article : Google Scholar : PubMed/NCBI | |
Brimson JM, Brown CA and Safrany ST: Antagonists show GTP-sensitive high-affinity binding to the sigma-1 receptor. Br J Pharmacol. 164:772–780. 2011. View Article : Google Scholar : PubMed/NCBI | |
Strobl JS, Kirkwood KL, Lantz TK, Lewine MA, Peterson VA and Worley JF III: Inhibition of human breast cancer cell proliferation in tissue culture by the neuroleptic agents pimozide and thioridazine. Cancer Res. 50:5399–5405. 1990.PubMed/NCBI | |
Neifeld JP, Tormey DC, Baker MA, Meyskens FL Jr and Taub RN: Phase II trial of the dopaminergic inhibitor pimozide in previously treated melanoma patients. Cancer Treat Rep. 67:155–157. 1983.PubMed/NCBI | |
Chen J, Dexheimer TS, Ai Y, Liang Q, Villamil MA, Inglese J, Maloney DJ, Jadhav A, Simeonov A and Zhuang Z: Selective and cell-active inhibitors of the USP1/UAF1 deubiquitinase complex reverse cisplatin resistance in non-small cell lung cancer cells. Chem Biol. 18:1390–1400. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sachlos E, Risueño RM, Laronde S, Shapovalova Z, Lee JH, Russell J, Malig M, McNicol JD, Fiebig-Comyn A, Graham M, et al: Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell. 149:1284–1297. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fond G, Macgregor A, Attal J, et al: Antipsychotic drugs: pro-cancer or anti-cancer? A systematic review. Med Hypotheses. 79:38–42. 2012. View Article : Google Scholar : PubMed/NCBI | |
Drori S, Eytan GD and Assaraf YG: Potentiation of anticancer-drug cytotoxicity by multidrug-resistance chemosensitizers involves alterations in membrane fluidity leading to increased membrane permeability. Eur J Biochem. 228:1020–1029. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kataoka Y, Ishikawa M, Miura M, Takeshita M, Fujita R, Furusawa S, Takayanagi M, Takayanagi Y and Sasaki K: Reversal of vinblastine resistance in human leukemic cells by haloperidol and dihydrohaloperidol. Biol Pharm Bull. 24:612–617. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wiklund ED, Catts VS, Catts SV, Ng TF, Whitaker NJ, Brown AJ and Lutze-Mann LH: Cytotoxic effects of antipsychotic drugs implicate cholesterol homeostasis as a novel chemotherapeutic target. Int J Cancer. 126:28–40. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhelev Z, Ohba H, Bakalova R, Hadjimitova V, Ishikawa M, Shinohara Y and Baba Y: Phenothiazines suppress proliferation and induce apoptosis in cultured leukemic cells without any influence on the viability of normal lymphocytes. Phenothiazines and leukemia. Cancer Chemother Pharmacol. 53:267–275. 2004. View Article : Google Scholar : PubMed/NCBI | |
Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ and Frenette PS: Autonomic nerve development contributes to prostate cancer progression. Science. 341:12363612013. View Article : Google Scholar : PubMed/NCBI | |
Li L and Hanahan D: Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell. 153:86–100. 2013. View Article : Google Scholar : PubMed/NCBI | |
Osuka S, Takano S, Watanabe S, Ishikawa E, Yamamoto T and Matsumura A: Valproic acid inhibits angiogenesis in vitro and glioma angiogenesis in vivo in the brain. Neurol Med Chir (Tokyo). 52:186–193. 2012. View Article : Google Scholar : PubMed/NCBI | |
Berendsen S, Broekman M, Seute T, Snijders T, van Es C, de Vos F, Regli L and Robe P: Valproic acid for the treatment of malignant gliomas: Review of the preclinical rationale and published clinical results. Expert Opin Investig Drugs. 21:1391–1415. 2012. View Article : Google Scholar : PubMed/NCBI | |
Van Nifterik KA, Van den Berg J, Slotman BJ, Lafleur MV, Sminia P and Stalpers P: Valproic acid sensitizes human glioma cells for temozolomide and γ-radiation. J Neurooncol. 107:61–67. 2012. View Article : Google Scholar : PubMed/NCBI | |
Das CM, Aguilera D, Vasquez H, Prasad P, Zhang M, Wolff JE and Gopalakrishnan V: Valproic acid induces p21 and topoisomerase-II (alpha/beta) expression and synergistically enhances etoposide cytotoxicity in human glioblastoma cell lines. J Neurooncol. 85:159–170. 2007. View Article : Google Scholar : PubMed/NCBI | |
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD and Rich JN: Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66:7843–7848. 2006. View Article : Google Scholar : PubMed/NCBI | |
Das S, Srikanth M and Kessler JA: Cancer stem cells and glioma. Nat Clin Pract Neurol. 4:427–435. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stiles CD and Rowitch DH: Glioma stem cells: a midterm exam. Neuron. 58:832–846. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fine HA: Glioma stem cells: Not all created equal. Cancer Cell. 15:247–249. 2009. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Zhou Q, Liu C and Tao ML: Drug screening study using glioma stem-like cells. Mol Med Rep. 6:1117–1120. 2012.PubMed/NCBI | |
Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, et al: Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 9:391–403. 2006. View Article : Google Scholar : PubMed/NCBI | |
Joo KM, Jin J, Kim E, Kim Ho K, Kim Y, Kang Gu B, Kang YJ, Lathia JD, Cheong KH, Song PH, et al: MET signaling regulates glioblastoma stem cells. Cancer Res. 72:3828–3838. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, Oh YT, Kim H, Rheey J, Nakano I, et al: Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell. 23:839–852. 2013. View Article : Google Scholar : PubMed/NCBI | |
Diamandis P, Wildenhain J, Clarke ID, Sacher AG, Graham J, Bellows DS, Ling EK, Ward RJ, Jamieson LG, Tyers M, et al: Chemical genetics reveals a complex functional ground state of neural stem cells. Nat Chem Biol. 3:268–273. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gil-Ad I, Shtaif B, Levkovitz Y, Dayag M, Zeldich E and Weizman A: Characterization of phenothiazine-induced apoptosis in neuroblastoma and glioma cell lines: Clinical relevance and possible application for brain-derived tumors. J Mol Neurosci. 22:189–198. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shin SY, Lee KS, Choi YK, Lim HJ, Lee HG, Lim Y and Lee YH: The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis. 34:2080–2089. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kast RE: Glioblastoma chemotherapy adjunct via potent serotonin receptor-7 inhibition using currently marketed high-affinity antipsychotic medicines. Br J Pharmacol. 161:481–487. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pierce KL, Premont RT and Lefkowitz RJ: Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 3:639–650. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lappano R and Maggiolini M: GPCRs and cancer. Acta Pharmacol Sin. 33:351–362. 2012. View Article : Google Scholar : PubMed/NCBI | |
Neves SR, Ram PT and Iyengar R: G protein pathways. Science. 296:1636–1639. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Maeso J: Anxious interactions. Nat Neurosci. 13:524–526. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meltzer HY: What's atypical about atypical antipsychotic drugs? Curr Opin Pharmacol. 4:53–57. 2004. View Article : Google Scholar : PubMed/NCBI | |
Blair DT and Dauner A: Extrapyramidal symptoms are serious side-effects of antipsychotic and other drugs. Nurse Pract. 56:62–64. 1992. | |
Seeman P, Lee T, Chau-Wong M and Wong K: Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 261:717–719. 1976. View Article : Google Scholar : PubMed/NCBI | |
Meltzer HY, Li Z, Kaneda Y and Ichikawa J: Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 27:1159–1172. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fribourg M, Moreno JL, Holloway T, Provasi D, Baki L, Mahajan R, Park G, Adney SK, Hatcher C, Eltit JM, et al: Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell. 147:1011–1023. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weiner DM, Burstein ES, Nash N, Croston GE, Currier EA, Vanover KE, Harvey SC, Donohue E, Hansen HC, Andersson CM, et al: 5-hydroxytryptamine2A receptor inverse agonists as antipsychotics. J Pharmacol Exp Ther. 299:268–276. 2001.PubMed/NCBI | |
Bymaster FP, Calligaro DO, Falcone JF, Marsh RD, Moore NA, Tye NC, Seeman P and Wong DT: Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology. 14:87–96. 1996. View Article : Google Scholar : PubMed/NCBI | |
Noguchi K, Herr D, Mutoh T and Chun J: Lysophosphatidic acid (LPA) and its receptors. Curr Opin Pharmacol. 9:15–23. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sanchez T and Hla T: Structural and functional characteristics of S1P receptors. J Cell Biochem. 92:913–922. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mills GB and Moolenaar WH: The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer. 3:582–591. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bagnato A and Rosanò L: The endothelin axis in cancer. Int J Biochem Cell Biol. 40:1443–1451. 2008. View Article : Google Scholar : PubMed/NCBI | |
Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan YC, Deng X, Chen L, Kim CC, Lau S, et al: FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene. 30:4437–4446. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lai SL, Chien AJ and Moon RT: Wnt/Fz signaling and the cytoskeleton: Potential roles in tumorigenesis. Cell Res. 19:532–545. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Wang X, Zou J, Zhang A, Wan Y, Pu P, Song Z, Qian C, Chen Y, Yang S, et al: miR-92b controls glioma proliferation and invasion through regulating Wnt/beta-catenin signaling via Nemo-like kinase. Neuro Oncol. 15:578–588. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gong A and Huang S: FoxM1 and Wnt/β-catenin signaling in glioma stem cells. Cancer Res. 72:5658–5662. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Zhang J, Han L, Pu P and Kang C: Wnt/beta-catenin signaling in glioma. J Neuroimmune Pharmacol. 7:740–749. 2012. View Article : Google Scholar : PubMed/NCBI | |
Scales SJ and de Sauvage FJ: Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci. 30:303–312. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jiang J and Hui CC: Hedgehog signaling in development and cancer. Dev Cell. 15:801–812. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ingham PW and McMahon AP: Hedgehog signaling in animal development: Paradigms and principles. Genes Dev. 15:3059–3087. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wicking C, Smyth I and Bale A: The hedgehog signalling pathway in tumorigenesis and development. Oncogene. 18:7844–7851. 1999. View Article : Google Scholar : PubMed/NCBI | |
Beachy PA, Karhadkar SS and Berman DM: Tissue repair and stem cell renewal in carcinogenesis. Nature. 432:324–331. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ruizi Altaba A, Mas C and Stecca B: The Gli code: An information nexus regulating cell fate, stemness and cancer. Trends Cell Biol. 17:438–447. 2007. View Article : Google Scholar : PubMed/NCBI | |
Vandercappellen J, Van Damme J and Struyf S: The role of CXC chemokines and their receptors in cancer. Cancer Lett. 267:226–244. 2008. View Article : Google Scholar : PubMed/NCBI | |
Strieter RM, Belperio JA, Phillips RJ and Keane MP: CXC chemokines in angiogenesis of cancer. Semin Cancer Biol. 14:195–200. 2004. View Article : Google Scholar : PubMed/NCBI | |
Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP and Belperio JA: Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer. 42:768–778. 2006. View Article : Google Scholar : PubMed/NCBI | |
Teicher BA and Fricker SP: CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 16:2927–2931. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Larsen PH, Hao C and Yong VW: CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem. 277:49481–49487. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ehtesham M, Winston JA, Kabos P and Thompson RC: CXCR4 expression mediates glioma cell invasiveness. Oncogene. 25:2801–2806. 2006. View Article : Google Scholar : PubMed/NCBI | |
Terasaki M, Sugita Y, Arakawa F, Okada Y, Ohshima K and Shigemori M: CXCL12/CXCR4 signaling in malignant brain tumors: A potential pharmacological therapeutic target. Brain Tumor Pathol. 28:89–97. 2011. View Article : Google Scholar : PubMed/NCBI | |
Girault JA and Greengard P: The neurobiology of dopamine signaling. Arch Neurol. 61:641–644. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gemignani F, Landi S, Moreno V, Gioia-Patricola L, Chabrier A, Guino E, Navarro M, Cambray M, Capellà G and Canzian F: Polymorphisms of the dopamine receptor gene DRD2 and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 14:1633–1638. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sarkar C, Chakroborty D, Chowdhury UR, Dasgupta PS and Basu S: Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin Cancer Res. 14:2502–2510. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rubi B and Maechler P: Minireview: New roles for peripheral dopamine on metabolic control and tumor growth: Let's seek the balance. Endocrinology. 151:5570–5581. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bellack AS: Scientific and consumer models of recovery in schizophrenia: Concordance, contrasts and implications. Schizophr Bull. 32:432–442. 2006. View Article : Google Scholar : PubMed/NCBI | |
Leucht S, Cipriani A, Spineli L, Mavridis D, Orey D, Richter F, Samara M, Barbui C, Engel RR, Geddes JR, et al: Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis. Lancet. 382:951–962. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ucok A and Gaebel W: Side effects of atypical antipsychotics: A brief overview. World Psychiatry. 7:58–62. 2008. View Article : Google Scholar : PubMed/NCBI |