Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity (Review)
- Authors:
- Mei Ding
- Xin Wang
-
Affiliations: Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China - Published online on: September 22, 2017 https://doi.org/10.3892/ol.2017.7030
- Pages: 6327-6333
This article is mentioned in:
Abstract
Parmigiani G, Boca S, Lin J, Kinzler KW, Velculescu V and Vogelstein B: Design and analysis issues in genome-wide somatic mutation studies of cancer. Genomics. 93:17–21. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, et al: The consensus coding sequences of human breast and colorectal cancers. Science. 314:268–274. 2006. View Article : Google Scholar : PubMed/NCBI | |
Greenman CP, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, et al: Patterns of somatic mutation in human cancer genomes. Nature. 446:153–158. 2007. View Article : Google Scholar : PubMed/NCBI | |
Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, Wang M, Feng W, Zander T, MacConaill L, et al: High-throughput oncogene mutation profiling in human cancer. Nat Genet. 39:347–351. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mangelberger D, Kern D, Loipetzberger A, Eberl M and Aberger F: Cooperative Hedgehog-EGFR signaling. Front Biosci (Landmark Ed). 17:90–99. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsushita S, Onishi H, Nakano K, Nagamatsu I, Imaizumi A, Hattori M, Oda Y, Tanaka M and Katano M: Hedgehog signaling pathway is a potential therapeutic target for gallbladder cancer. Cancer Sci. 105:272–280. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rubin LL and de Sauvage FJ: Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov. 5:1026–1033. 2006. View Article : Google Scholar : PubMed/NCBI | |
Takebe N, Harris PJ, Warren RQ and Ivy SP: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 8:1–106. 2011. View Article : Google Scholar : PubMed/NCBI | |
Karamboulas C and Ailles L: Developmental signaling pathways in cancer stem cells of sol-id tumors. Biochim Biophys Acta. 1830:2481–2495. 2013. View Article : Google Scholar : PubMed/NCBI | |
Dodge ME and Lum L: Drugging the cancer stem cell compartment: Lessons learned from the hedgehog and Wnt signal transduction pathways. Annu Rev Pharmacol Toxicol. 51:289–310. 2011. View Article : Google Scholar : PubMed/NCBI | |
JP IV Morris, Wang SC and Hebrok M: KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 10:683–695. 2010. View Article : Google Scholar : PubMed/NCBI | |
Katoh Y and Katoh M: WNT antagonist, SFRP1, is Hedgehog signaling target. Int J Mol Med. 17:171–175. 2006.PubMed/NCBI | |
Bovolenta P, Esteve P, Ruiz JM, Cisneros E and Lopez-Rios J: Beyond Wnt inhibition: New functions of secreted Frizzled-related proteins in development and disease. J Cell Sci. 121:737–746. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nüsslein-Volhard C and Wieschaus E: Mutations affecting segment number and polarity in Drosophila. Nature. 287:795–801. 1980. View Article : Google Scholar : PubMed/NCBI | |
Varjosalo M and Taipale J: Hedgehog signaling. J Cell Sci. 120:3–6. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wilson CW and Chuang PT: Mechanism and evolution of cytosolic Hedgehog signal transduction. Development. 137:2079–2094. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rohatgi R, Milenkovic L, Corcoran RB and Scott MP: Hedgehog signal transduction by Smoothened: Pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci USA. 106:pp. 3196–3201. 2009; View Article : Google Scholar : PubMed/NCBI | |
Varjosalo M and Taipale J: Hedgehog: Functions and mechanisms. Genes Dev. 22:2454–2472. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rohatgi R, Milenkovic L and Scott MP: Patched1 regulate hedgehog signaling at the primary cilium. Science. 317:372–376. 2007. View Article : Google Scholar : PubMed/NCBI | |
Marigo V and Tabin CJ: Regulation of patched by sonic hedgehog in the developing neural tube. Proc Natl Acad Sci USA. 93:pp. 9346–9351. 1996; View Article : Google Scholar : PubMed/NCBI | |
Bellusci S, Furuta Y, Rush MG, Henderson R, Winnier G and Hogan BL: Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development. 124:53–63. 1997.PubMed/NCBI | |
Hardcastle Z, Mo R, Hui CC and Sharpe PT: The Shh signalling pathway in tooth development: Defects in Gli2 and Gli3 mutants. Development. 125:2803–2811. 1998.PubMed/NCBI | |
Litingtung Y, Lei L, Westphal H and Chiang C: Sonic hedgehog is essential to foregut development. Nat Genet. 20:58–61. 1998. View Article : Google Scholar : PubMed/NCBI | |
St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, McMahon JA, Lewis PM, Paus R and McMahon AP: Sonic hedgehog signaling is essential for hair development. Curr Biol. 8:1058–1068. 1998. View Article : Google Scholar : PubMed/NCBI | |
Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM and Tabin CJ: Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 273:613–622. 1996. View Article : Google Scholar : PubMed/NCBI | |
Bitgood MJ, Shen L and McMahon AP: Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol. 6:298–304. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chen Y and Jiang J: Decoding the phosphorylation code in Hedgehog signal transduction. Cell Res. 23:186–200. 2013. View Article : Google Scholar : PubMed/NCBI | |
Merchant JL: Hedgehog signaling in gut development, physiology and cancer. J Physiol. 590:421–432. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bertrand FE, Angus CW, Partis WJ and Sigounas G: Developmental pathways in colon cancer: Crosstalk between WNT, BMP, Hedgehog and Notch. Cell Cycle. 11:4344–4351. 2012. View Article : Google Scholar : PubMed/NCBI | |
Niu Y, Li F, Tang B, Shi Y, Hao Y and Yu P: Clinicopathological correlation and prognostic significance of sonic hedgehog protein overexpression in human gastric cancer. Int J Clin Exp Pathol. 7:5144–5153. 2014.PubMed/NCBI | |
Kai K, Aishima S and Miyazaki K: Gallbladder cancer: Clinical and pathological approach. World J Clin Cases. 2:515–521. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nigam A: Breast cancer stem cells, pathways and therapeutic perspectives 2011. Indian J Surg. 75:170–180. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hwang J, Kang MH, Yoo YA, Quan YH, Kim HK, Oh SC and Choi YH: The effects of sonic hedgehog signaling pathway components on non-small-cell lung cancer progression and clinical outcome. World J Surg Oncol. 12:2682014. View Article : Google Scholar : PubMed/NCBI | |
Ok CY, Singh RR and Vega F: Aberrant activation of the hedgehog signaling pathway in malignant hematological neoplasms. Am J Pathol. 180:2–11. 2012. View Article : Google Scholar : PubMed/NCBI | |
Irvine DA and Copland M: Targeting hedgehog in hematologic malignancy. Blood. 119:2196–2204. 2012. View Article : Google Scholar : PubMed/NCBI | |
Harwood CA, Attard NR, O'Donovan P, Chambers P, Perrett CM, Proby CM, McGregor JM and Karran P: PTCH mutations in basal cell carcinomas from azathioprine-treated organ transplant recipients. Br J Cancer. 99:1276–1284. 2008. View Article : Google Scholar : PubMed/NCBI | |
Soufir N, Gerard B, Portela M, Brice A, Liboutet M, Saiag P, Descamps V, Kerob D, Wolkenstein P, Gorin I, et al: PTCH mutations and deletions in patients with typical nevoid basal cell carcinoma syndrome and in patients with a suspected genetic predisposition to basal cell carcinoma: A French study. Br J Cancer. 95:548–553. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nitzki F, Tolosa EJ, Cuvelier N, Frommhold A, Salinas-Riester G, Johnsen SA, Fernandez-Zapico ME and Hahn H: Overexpression of mutant Ptch in rhabdomyosarcomas is associated with promoter hypomethylation and increased Gli1 and H3K4me3 occupancy. Oncotarget. 6:9113–9124. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lim CB, Prêle CM, Cheah HM, Cheng YY, Klebe S, Reid G, Watkins DN, Baltic S, Thompson PJ and Mutsaers SE: Mutational analysis of hedgehog signaling pathway genes in human malignant mesothelioma. PLoS One. 8:e666852013. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Li S, Tong C, Zhao Y, Wang B, Liu Y, Jia J and Jiang J: G protein-coupled receptor kinase 2 promotes high-level Hedgehog signaling by regulating the active state of Smo through kinase-dependent and kinase-independent mechanisms in Drosophila. Genes Dev. 24:2054–2067. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Liu Z, Jang F, Xiang C, Li Y and He Y: Autocrine Sonic hedgehog attenuates inflammation in cerulein-induced acute pancreatitis in mice via upregulation of IL-10. PLoS One. 7:e441212012. View Article : Google Scholar : PubMed/NCBI | |
Ertao Z, Jianhui C, Chuangqi C, Changjiang Q, Sile C, Yulong H, Hui W and Shirong C: Autocrine Sonic hedgehog signaling promotes gastric cancer proliferation through induction of phospholipase Cy1 and the ERK1/2 pathway. J Exp Clin Cancer Res. 35:632016. View Article : Google Scholar : PubMed/NCBI | |
Levi B, James AW, Nelson ER, Li S, Peng M, Commons GW, Lee M, Wu B and Longaker MT: Human adipose-derived stromal cells stimulate autogenous skeletal repair via paracrine Hedgehog signaling with calvarial osteoblasts. Stem Cells Dev. 20:243–257. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chan IS, Guy CD, Chen Y, Lu J, Swiderska-Syn M, Michelotti GA, Karaca G, Xie G, Krüger L, Syn WK, et al: Paracrine Hedgehog signaling drives metabolic changes in hepatocellular carcinoma. Cancer Res. 72:6344–6350. 2012. View Article : Google Scholar : PubMed/NCBI | |
Scales SJ and de Sauvage FJ: Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol Sci. 30:303–312. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, Holcomb T, Stinson J, Gould SE, Coleman B, et al: Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 361:1173–1178. 2009. View Article : Google Scholar : PubMed/NCBI | |
Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, et al: Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 361:1164–1172. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dubey AK, Dubey S, Handu SS and Qazi MA: Vismodegib: The first drug approved for advanced and metastatic basal cell carcinoma. J Postgrad Med. 59:48–50. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stecca B, Ruiz I and Altaba A: Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J Mol Cell Biol. 2:84–95. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lauth M and Toftgård R: Non-canonical activation of GLI transcription factors: Implications for targeted anti-cancer therapy. Cell Cycle. 6:2458–2463. 2007. View Article : Google Scholar : PubMed/NCBI | |
Riobo NA, Lu K and Emerson CP Jr: Hedgehog signal transduction: Signal integration and cross talk in development and cancer. Cell Cycle. 5:1612–1615. 2006. View Article : Google Scholar : PubMed/NCBI | |
Muñoz-Descalzo S, Hadjantonakis AK and Arias AM: Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Semin Cell Dev Biol. 47-48:1–109. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sokol SY: Maintaining embryonic stem cell pluripotency with Wnt signaling. Development. 138:4341–4350. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Wang X, Zhang H, Wang Z, Nan G, Li Y, Zhang F, Mohammed MK, Haydon RC, Luu HH, et al: The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: Implications in targeted cancer therapies. Lab Invest. 96:116–136. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mohammed MK, Shao C, Wang J, Wei Q, Wang X, Collier Z, Tang S, Liu H, Zhang F, Huang J, et al: Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis. 3:11–40. 2016. View Article : Google Scholar : PubMed/NCBI | |
Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kalderon D: Similarities between the Hedgehog and Wnt signaling pathways. Trends Cell Biol. 12:523–531. 2002. View Article : Google Scholar : PubMed/NCBI | |
He X, Semenov M, Tamai K and Zeng X: LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development. 131:1663–1677. 2004. View Article : Google Scholar : PubMed/NCBI | |
Peifer M and McEwen DG: The ballet of morphogenesis: Unveiling the hidden choreographers. Cell. 109:271–274. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shigemitsu K, Sekido Y, Usami N, Mori S, Sato M, Horio Y, Hasegawa Y, Bader SA, Gazdar AF, Minna JD, et al: Genetic alteration of the beta-catenin gene (CTNNBI) in human lung cancer and malignant mesothelioma and identification of a new 3p21.3 homozygous deletion. Oncogene. 20:4249–4257. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kimura Y, Furuhata T, Mukaiya M, Kihara C, Kawakami M, Okita K, Yanai Y, Zenbutsu H, Satoh M, Ichimiya S and Hirata K: Frequent beta-catenin alteration in gallbladder carcinomas. J Exp Clin Cancer Res. 22:321–328. 2003.PubMed/NCBI | |
Coscio A, Chang DW, Roth JA, Ye Y, Gu J, Yang P and Wu X: Genetic variants of the Wnt signaling pathway as predictors of recurrence and survival in early-stage non-small cell lung cancer patients. Carcinogenesis. 35:1284–1291. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li S, Li S, Sun Y and Li L: The expression of β-catenin in different subtypes of breast cancer and its clinical significance. Tumour Biol. 35:7693–7698. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lu D, Choi MY, Yu J, Castro JE, Kipps TJ and Carson DA: Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. Proc Matl Acad Sci USA. 108:pp. 13253–13257. 2011; View Article : Google Scholar | |
Price MA: CKI, there's more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev. 20:399–410. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rhee CS, Sen M, Lu D, Wu C, Leoni L, Rubin J, Corr M and Carson DA: Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene. 21:6598–6605. 2002. View Article : Google Scholar : PubMed/NCBI | |
Collu GM, Hidalgo-Sastre A and Brennan K: Wnt-Notch signaling crosstalk in development and disease. Cell Mol Life Sci. 71:3553–3567. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Zhang J and Ma D: Crosstalk of Hippo/YAP and Wnt/β-catenin pathways. Yi Chuan. 36:95–102. 2014.(In Chinese). View Article : Google Scholar : PubMed/NCBI | |
Shimobayashi M and Hall MN: Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol. 15:155–162. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moussaif M and Sze JY: Intraflagellar transport/Hedgehog-related signaling components couple sensory cilium morphology and serotonin biosynthesis in Caenorhabditis elegans. J Neurosci. 29:4065–4075. 2009. View Article : Google Scholar : PubMed/NCBI | |
Brás-Pereira C, Potier D, Jacobs J, Aerts S, Casares F and Janody F: dachshund Potentiates Hedgehog Signaling during Drosophila Retinogenesis. PLoS Genet. 12:e10062042016. View Article : Google Scholar : PubMed/NCBI | |
Poss KD, Keating MT and Nechiporuk A: Tales of regeneration in zebrafish. Dev Dyn:. 226:202–210. 2003. View Article : Google Scholar : PubMed/NCBI | |
Akimenko MA, Mari-Beffa M, Becerra J and Géraudie J: Old questions, new tools, and some answers to the mystery of fin regeneration. Dev Dyn. 226:190–201. 2003. View Article : Google Scholar : PubMed/NCBI | |
Stoick-Cooper CL, Weidinger G, Riehle KJ, Hubbert C, Major MB, Fausto N and Moon RT: Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development. 134:479–489. 2007. View Article : Google Scholar : PubMed/NCBI | |
Singh BN, Doyle MJ, Weaver CV, Koyano-Nakagawa N and Garry DJ: Hedgehog and Wnt coordinate signaling in myogenic progenitors and regulate limb regeneration. Dev Biol. 371:23–34. 2012. View Article : Google Scholar : PubMed/NCBI | |
Day TF and Yang Y: Wnt and hedgehog signaling pathways in bone development. J Bone Joint Surg Am. 90 Suppl 1:S19–S24. 2008. View Article : Google Scholar | |
Liu B, Chen S, Cheng D, Jing W and Helms JA: Primary cilia integrate hedgehog and Wnt signaling during tooth development. J Dent Res. 93:475–482. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oberhofer G, Grossmann D, Siemanowski JL, Beissbarth T and Bucher G: Wnt/β-catenin signaling integrates patterning and metabolism of the insect growth zone. Development. 141:4740–4750. 2014. View Article : Google Scholar : PubMed/NCBI | |
Shin K, Lee J, Guo N, Kim J, Lim A, Qu L, Mysorekar IU and Beachy PA: Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature. 472:110–114. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, D'Amore PA and Sokol SY: Functional and biochemical interactions of Wnts with FrzA, a secreted Wnt antagonist. Development. 125:4767–4776. 1998.PubMed/NCBI | |
He J, Sheng T, Stelter AA, Li C, Zhang X, Sinha M, Luxon BA and Xie J: Suppressing Wnt signalling by the hedgehog pathway through sFRP-1. J Biol Chem. 281:35598–35602. 2006. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Medina R, Le Dreau G, Ros M and Marti E: Hedgehog activation is required upstream of Wnt signalling to control neural progenitor proliferation. Development. 136:3301–3309. 2009. View Article : Google Scholar : PubMed/NCBI | |
Borday C, Cabochette P, Parain K, Mazurier N, Janssens S, Tran HT, Sekkali B, Bronchain O, Vleminckx K, Locker M and Perron M: Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation. Development. 139:3499–3509. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim JH, Shin HS, Lee SH, Lee I, Lee YS, Park JC, Kim YJ, Chung JB and Lee YC: Contrasting activity of Hedgehog and Wnt pathways according to gastric cancer cell differentiation: Relevance of crosstalk mechanisms. Cancer Sci. 101:328–335. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kurosaka H, Lulianella A, Williams T and Trainor PA: Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis. J Clin Invest. 124:1660–1671. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Shi L, Zhang W, Zhang X, Peng Y, Chen X, Tang C, Li X and Zhou X: Expression of Indian hedgehog is negatively correlated with APC gene mutation in colorectal tumors. Int J Clin Exp Med. 7:2150–2155. 2014.PubMed/NCBI | |
Xuan YH, Jung HS, Choi YL, Shin YK, Kim HJ, Kim KH, Kim WJ, Lee YJ and Kim SH: Enhanced expression of hedgehog signaling molecules in squamous cell carcinoma of uterine cervix and its precursor lesions. Mod Patho. 19:1139–1147. 2006. | |
Yanai K, Nakamura M, Akiyoshi T, Nagai S, Wada J, Koga K, Noshiro H, Nagai E, Tsuneyoshi M, Tanaka M and Katano M: Crosstalk of hedgehog and Wnt pathways in gastric cancer. Cancer Lett. 263:145–156. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jacob J and Briscoe J: Gli proteins and the control of spinal-cord patterning. EMBO Rep. 4:761–765. 2003. View Article : Google Scholar : PubMed/NCBI | |
Alvarez-Medina R, Cayuso J, Okubo T, Takada S and Marti E: Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development. 135:237–247. 2008. View Article : Google Scholar : PubMed/NCBI | |
Muroyama Y, Fujihara M, Ikeya M, Kondoh H and Takada S: Wnt signalling plays an essential role in neuronal specification of the dorsal spinal cord. Genes Dev. 16:548–553. 2002. View Article : Google Scholar : PubMed/NCBI | |
Abbasi AA, Paparidis Z, Malik S, Goode DK, Callaway H, Elgar G and Grzeschick KH: Human GLI3 intragenic conserved non-coding sequences are tissue-specific enhancers. PLoS One. 2:e3662007. View Article : Google Scholar : PubMed/NCBI | |
Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, Leost M, Ryan XP, Vonica CA, Brivanlou A, Dajani R, et al: GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol. 10:1255–1266. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, et al: Small molecule-mediated disruption of Wnt-dependent signalling in tissue regeneration and cancer. Nat Chem Biol. 5:100–107. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pöschl J, Bartels M, Ohli J, Bianchi E, Kuteykin-Teplyakov K, Grammel D, Ahlfeld J and Schüller U: Wnt/β-catenin signaling inhibits the Shh pathway and impairs tumor growth in Shh-dependent medulloblastoma. Acta Neuropathol. 127:605–607. 2014. View Article : Google Scholar : PubMed/NCBI |