1
|
Hamblin TJ, Davis Z, Gardiner A, Oscier DG
and Stevenson FK: Unmutated IgV(H) genes are associated with a more
aggressive form of chronic lymphocytic leukemia. Blood.
94:1848–1854. 1999.PubMed/NCBI
|
2
|
Baliakas P, Hadzidimitriou A, Sutton LA,
Rossi D, Minga E, Villamor N, Larrayoz M, Kminkova J,
Agathangelidis A, Davis Z, et al: Recurrent mutations refine
prognosis in chronic lymphocytic leukemia. Leukemia. 29:329–336.
2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Puente XS, Pinyol M, Quesada V, Conde L,
Ordóñez GR, Villamor N, Escaramis G, Jares P, Beà S, González-Díaz
M, et al: Whole-genome sequencing identifies recurrent mutations in
chronic lymphocytic leukemia. Nature. 475:101–105. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang L, Lawrence MS, Wan Y, Stojanov P,
Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L,
et al: SF3B1 and other novel cancer genes in chronic lymphocytic
leukemia. N Engl J Med. 365:2497–2506. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao
Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, et al: MYD88
L265P somatic mutation in Waldenström's macroglobulinemia. N Engl J
Med. 367:826–833. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang CZ, Lin J, Qian J, Shao R, Xue D,
Qian W, Xiao GF, Deng ZQ, Yang J, Li Y and Chen XX: Development of
high-resolution melting analysis for the detection of the MYD88
L265P mutation. Clin Biochem. 46:385–387. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu L, Hunter ZR, Yang G, Zhou Y, Cao Y,
Liu X, Morra E, Trojani A, Greco A, Arcaini L, et al: MYD88 L265P
in Waldenström's macroglobulinemia, immunoglobulin M monoclonal
gammopathy, and other B-cell lymphoproliferative disorders using
conventional and quantitative allele-specific polymerase chain
reaction. Blood. 121:2051–2058. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Martínez-Trillos A, Pinyol M, Navarro A,
Aymerich M, Jares P, Juan M, Rozman M, Colomer D, Delgado J, Giné
E, et al: Mutations in TLR/MYD88 pathway identify a subset of young
chronic lymphocytic leukemia patients with favorable outcome.
Blood. 123:3790–3796. 2014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Baliakas P, Hadzidimitriou A,
Agathangelidis A, Rossi D, Sutton LA, Kminkova J, Scarfo L,
Pospisilova S, Gaidano G, Stamatopoulos K, et al: Prognostic
relevance of MYD88 mutations in CLL: The jury is still out. Blood.
126:1043–1044. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Improgo MR, Tesar B, Klitgaard JL,
Magori-Cohen R, Yu L, Kasar S, Chaudhary D, Miao W, Fernandes SM,
Hoang K, et al: MYD88 L265P mutations identify a prognostic gene
expression signature and a pathway for targeted inhibition in CLL.
Br J Haematol. 184:925–936. 2019.PubMed/NCBI
|
11
|
Kim JA, Hwang B, Park SN, Huh S, Im K,
Choi S, Chung HY, Huh J, Seo EJ, Lee JH, et al: Genomic profile of
chronic lymphocytic leukemia in korea identified by targeted
sequencing. PLoS One. 11:e01676412016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cortese D, Sutton LA, Cahill N, Smedby KE,
Geisler C, Gunnarsson R, Juliusson G, Mansouri L and Rosenquist R:
On the way towards a ‘CLL prognostic index’: Focus on TP53, BIRC3,
SF3B1, NOTCH1 and MYD88 in a population-based cohort. Leukemia.
28:710–713. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lin SC, Lo YC and Wu H: Helical assembly
in the MYD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature.
465:885–890. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ngo VN, Young RM, Schmitz R, Jhavar S,
Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, et al:
Oncogenically active MYD88 mutations in human lymphoma. Nature.
470:115–119. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Marino M, Monzani ML, Brigante G, Cioni K,
Madeo B, Santi D, Maiorana A, Bettelli S, Moriondo V, Pignatti E,
et al: High-resolution melting is a sensitive, cost-effective,
time-saving technique for BRAF V600E Detection in thyroid FNAB
washing liquid: A prospective cohort study. Eur Thyroid J. 4:73–81.
2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chua KH, Lim SC, Ng CC, Lee PC, Lim YA,
Lau TP and Chai HC: Development of high resolution melting analysis
for the diagnosis of human malaria. Sci Rep. 5:156712015.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Li J, Zhao GH, Lin R, Blair D, Sugiyama H
and Zhu XQ: Rapid detection and identification of four major
schistosoma species by high-resolution melt (HRM) analysis.
Parasitol Res. 114:4225–4232. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Campregher PV and Hamerschlak N: Novel
prognostic gene mutations identified in chronic lymphocytic
leukemia and their impact on clinical practice. Clin Lymphoma
Myeloma Leuk. 14:271–276. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zenz T, Mertens D, Kuppers R, Döhner H and
Stilgenbauer S: From pathogenesis to treatment of chronic
lymphocytic leukaemia. Nat Rev Cancer. 10:37–50. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Soma LA, Craig FE and Swerdlow SH: The
proliferation centre microenvironment and prognostic markers in
chronic lymphocytic leukemia/small lymphocytic lymphoma. Hum
Pathol. 37:152–159. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Oscier DG, Rose-Zerilli MJ, Winkelmann N,
Gonzalez de Castro D, Gomez B, Forster J, Parker H, Parker A,
Gardiner A, Collins A, et al: The clinical significance of NOTCH1
and SF3B1 mutations in the UK LRF CLL4 trail. Blood. 121:468–475.
2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mansouri L, Cahill N, Gunnarsson R, Smedby
KE, Tjönnfjord E, Hjalgrim H, Juliusson G, Geisler C and Rosenquist
R: NOTCH1 and SF3B1 mutations can be added to the hierarchical
prognostic classification in chronic lymphocytic leukemia.
Leukemia. 27:521–514. 2013. View Article : Google Scholar
|
23
|
Rossi D, Rasi S, Fabbri G, Spina V,
Fangazio M, Forconi F, Marasca R, Laurenti L, Bruscaggin A, Cerri
M, et al: Mutations of NOTCH1 are an independent predictor of
survival in chronic lymphocytic leukemia. Blood. 119:521–529. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Montillo M, Hamblin T, Hallek M,
Montserrat E and Morra E: Chronic lymphocytic leukemia: Novel
prognostic factors and their relevance for risk-adapted therapeutic
strategies. Haematologica. 90:391–399. 2005.PubMed/NCBI
|
25
|
Kawasaki T and Kawai T: Toll-like receptor
signalling pathways. Front Immunol. 5:4612014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Gay NJ and Keith FJ: Drosophila toll and
IL-1 receptor. Nature. 351:355–356. 1991. View Article : Google Scholar : PubMed/NCBI
|
27
|
Schmidt U, Hulkkonen J and Naue J:
Detection of a G>C single nucleotide polymorphism within a
repetitive DNA sequence by high-resolution DNA melting. Int J Legal
Med. 130:1181–1184. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Poon KS, Liu TC, Tan ML and Koay ES:
One-step molecular detection of the MYD88 L265P mutation by
unlabeled probe genotyping analysis. Mol Cell Probes. 29:74–77.
2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rose-zerilli MJ, Gonzalez D, Gomez B,
Parker H, Gardiner A, Parker A, Collins A, Catovsky D, Oscier DG
and Strefford JC: The clinical significant of NOTCH1 and MYD88
mutations in patients enrolled onto the UK CLL4 treatment trial and
in an early stage A cll cohort. Clin Lymph Myelom Leuk. 11 (Suppl
2):S2292011. View Article : Google Scholar
|
30
|
Xu JJ, Yao FR, Jiang M, Zhang YT and Guo
F: High-resolution melting analysis for rapid and sensitive NOTCH1
screening in chronic lymphocytic leukemia. Int J Mol Med.
39:415–422. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sady H, Al-mekhlafi HM, Ngui R, Atroosh
WM, Al-Delaimy AK, Nasr NA, Dawaki S, Abdulsalam AM, Ithoi I, Lim
YA, et al: Detection of schistosomamansoni and
schistosomahaematobium by real-time PCR with high resolution
melting analysis. Int J Mol Sci. 16:16085–16103. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hauss O and Müller O: The protein
truncation test in mutation detection and molecular diagnosis.
Methods Mol Biol. 375:151–164. 2007.PubMed/NCBI
|
33
|
Hayashi K: PCR-SSCP: A method for
detection of mutations. Genet Anal Tech Appl. 9:73–79. 1992.
View Article : Google Scholar : PubMed/NCBI
|
34
|
de Juan Jiménez I, Cardeñosa EE, Suela SP,
González EB, Trejo DS, Lluch OF and Gilabert PB: Advantage of
high-resolution melting curve analysis over conformation-sensitive
gel electrophoresis for mutational screening of BRCA1 and BRCA2
genes. Clin Chim Acta. 412:578–582. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chang YS, Lin CY, Yang SF, Ho CM and Chang
JG: High-resolution melting analysis for gene scanning of
adenomatous polyposis coli (APC) gene with oral squamous cell
carcinoma samples. Appl Immunohistochem Mol Morphol. 24:97–104.
2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hondow HL, Fox SB, Mitchell G, Scott RJ,
Beshay V, Wong SQ, kConFab Investigators and Dobrovic A: A
high-throughput protocol for mutation scanning of the BRCA1 and
BRCA2 genes. BMC Cancer. 11:2652011. View Article : Google Scholar : PubMed/NCBI
|