
Drug resistance mechanisms and progress in the treatment of EGFR‑mutated lung adenocarcinoma (Review)
- Authors:
- Ruizhu Sun
- Zhansheng Hou
- Yankui Zhang
- Bo Jiang
-
Affiliations: Department of Medical Care, The Third Affiliated Hospital of Kunming Medical University, College of Clinical Oncology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China - Published online on: September 26, 2022 https://doi.org/10.3892/ol.2022.13528
- Article Number: 408
-
Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cao M, Li H, Sun D and Chen W: Cancer burden of major cancers in China: A need for sustainable actions. Cancer Commun (Lond). 40:205–210. 2020. View Article : Google Scholar : PubMed/NCBI | |
Camidge DR, Doebele RC and Kerr KM: Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol. 16:341–355. 2019. View Article : Google Scholar | |
Lee CK, Davies L, Wu YL, Mitsudomi T, Inoue A, Rosell R, Zhou C, Nakagawa K, Thongprasert S, Fukuoka M, et al: Gefitinib or erlotinib vs chemotherapy for EGFR mutation-positive lung cancer: Individual patient data meta-analysis of overall survival. J Natl Cancer Inst. 109:2017. View Article : Google Scholar | |
Rotow J and Bivona TG: Understanding and targeting resistance mechanisms in NSCLC. Nat Rev Cancer. 17:637–658. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi Y and Mitsudomi T: Not all epidermal growth factor receptor mutations in lung cancer are created equal: Perspectives for individualized treatment strategy. Cancer Sci. 107:1179–1186. 2016. View Article : Google Scholar | |
Shi Y, Au JS, Thongprasert S, Srinivasan S, Tsai CM, Khoa MT, Heeroma K, Itoh Y, Cornelio G and Yang PC: A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 9:154–162. 2014. View Article : Google Scholar | |
Shi Y, Li J, Zhang S, Wang M, Yang S, Li N, Wu G, Liu W, Liao G, Cai K, et al: Molecular Epidemiology of EGFR mutations in asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology-Mainland China Subset analysis of the PIONEER study. PLoS One. 10:e01435152015. View Article : Google Scholar : PubMed/NCBI | |
Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, et al: Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 361:947–957. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu YL, Zhou C, Liam CK, Wu G, Liu X, Zhong Z, Lu S, Cheng Y, Han B, Chen L, et al: First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: Analyses from the phase III, randomized, open-label, ENSURE study. Ann Oncol. 26:1883–1889. 2015. View Article : Google Scholar | |
Schuler M, Paz-Ares L, Sequist LV, Hirsh V, Lee KH, Wu YL, Lu S, Zhou C, Feng J, Ellis SH, et al: First-line afatinib for advanced EGFRm+ NSCLC: Analysis of long-term responders in the LUX-Lung 3, 6, and 7 trials. Lung Cancer. 133:10–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu YL, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, Tsuji F, Linke R, Rosell R, Corral J, et al: Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. Lancet Oncol. 18:1454–1466. 2017. View Article : Google Scholar | |
Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, Zhou C, Reungwetwattana T, Cheng Y, Chewaskulyong B, et al: Overall survival with osimertinib in untreated, EGFR-Mutated advanced NSCLC. N Engl J Med. 382. pp. 41–50. 2020, View Article : Google Scholar : PubMed/NCBI | |
Shi YK, Wang L, Han BH, Li W, Yu P, Liu YP, Ding CM, Song X, Ma ZY, Ren XL, et al: First-line icotinib versus cisplatin/pemetrexed plus pemetrexed maintenance therapy for patients with advanced EGFR mutation-positive lung adenocarcinoma (CONVINCE): A phase 3, open-label, randomized study. Ann Oncol. 28:2443–2450. 2017. View Article : Google Scholar | |
Rebuzzi SE, Alfieri R, La Monica S, Minari R, Petronini PG and Tiseo M: Combination of EGFR-TKIs and chemotherapy in advanced EGFR mutated NSCLC: Review of the literature and future perspectives. Crit Rev Oncol Hematol. 146:1028202020. View Article : Google Scholar | |
Huang L and Fu L: Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B. 5:390–401. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, et al: Osimertinib or platinum-pemetrexed in EGFR T790M-Positive lung cancer. N Engl J Med. 376:629–640. 2017. View Article : Google Scholar : PubMed/NCBI | |
Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B, Lai Z, Markovets A, Vivancos A, Kuang Y, et al: Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 21:560–562. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Tsui ST, Liu C, Song Y and Liu D: EGFR C797S mutation mediates resistance to third-generation inhibitors in T790M-positive non-small cell lung cancer. J Hematol Oncol. 9:592016. View Article : Google Scholar | |
Lim SM, Syn NL, Cho BC and Soo RA: Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat Rev. 65:1–10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nagano T, Tachihara M and Nishimura Y: Mechanism of resistance to epidermal growth factor receptor-tyrosine kinase inhibitors and a potential treatment strategy. Cells. 7:2122018. View Article : Google Scholar | |
Park K, Tan EH, O'Byrne K, Zhang L, Boyer M, Mok T, Hirsh V, Yang JC, Lee KH, Lu S, et al: Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B, open-label, randomised controlled trial. Lancet Oncol. 17:577–589. 2016. View Article : Google Scholar | |
Jänne PA, Ou SI, Kim DW, Oxnard GR, Martins R, Kris MG, Dunphy F, Nishio M, O'Connell J, Paweletz C, et al: Dacomitinib as first-line treatment in patients with clinically or molecularly selected advanced non-small-cell lung cancer: A multicentre, open-label, phase 2 trial. Lancet Oncol. 15:1433–1441. 2014. View Article : Google Scholar | |
Wu SG, Liu YN, Tsai MF, Chang YL, Yu CJ, Yang PC, Yang JC, Wen YF and Shih JY: The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget. 7:12404–12413. 2016. View Article : Google Scholar | |
Cabanero M, Sangha R, Sheffield BS, Sukhai M, Pakkal M, Kamel-Reid S, Karsan A, Ionescu D, Juergens RA, Butts C and Tsao MS: Management of EGFR-mutated non-small-cell lung cancer: Practical implications from a clinical and pathology perspective. Curr Oncol. 24:111–119. 2017. View Article : Google Scholar | |
Mok TS, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, Chawla A, Rosell R, Corral J, Migliorino MR, et al: Updated overall survival in a randomized study comparing dacomitinib with gefitinib as first-line treatment in patients with advanced non-small-cell lung cancer and EGFR-Activating mutations. Drugs. 81:257–266. 2021. View Article : Google Scholar : PubMed/NCBI | |
Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, et al: Osimertinib in untreated EGFR-Mutated advanced non-small-cell lung cancer. N Engl J Med. 378:113–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu YL, Ahn MJ, Garassino MC, Han JY, Katakami N, Kim HR, Hodge R, Kaur P, Brown AP, Ghiorghiu D, et al: CNS efficacy of osimertinib in patients with T790M-Positive advanced non-small-cell lung cancer: Data from a Randomized phase III Trial (AURA3). J Clin Oncol. 36:2702–2709. 2018. View Article : Google Scholar | |
Reungwetwattana T, Nakagawa K, Cho BC, Cobo M, Cho EK, Bertolini A, Bohnet S, Zhou C, Lee KH, Nogami N, et al: CNS response to osimertinib versus standard epidermal growth factor receptor tyrosine kinase inhibitors in patients with untreated EGFR-Mutated advanced non-small-cell lung cancer. J Clin Oncol. Aug 28–2018.(Epub ahead of print). View Article : Google Scholar | |
Lu S, Wang Q, Zhang G, Dong X, Yang CT, Song Y, Chang GC, Lu Y, Pan H, Chiu CH, et al: Efficacy of aumolertinib (HS-10296) in patients with advanced EGFR T790M+ NSCLC: Updated post-national medical products administration approval results from the APOLLO registrational trial. J Thorac Oncol. 17:411–422. 2022. View Article : Google Scholar | |
Lu S, Wang Q, Zhang G, Dong X, Yang C, Song Y, Chang GC, LU Y, Pan H, Chiu CH, et al: 1208P Final results of APOLLO study: Overall survival (OS) of aumolertinib in patients with pretreated EGFR T790M-positive locally advanced or metastatic non-small cell lung cancer (NSCLC). Ann Oncol. 32:S9622021. View Article : Google Scholar | |
Shi Y, Hu X, Zhang S, Lv D, Wu L, Yu Q, Zhang Y, Liu L, Wang X, Cheng Y, et al: Efficacy, safety, and genetic analysis of furmonertinib (AST2818) in patients with EGFR T790M mutated non-small-cell lung cancer: A phase 2b, multicentre, single-arm, open-label study. Lancet Respir Med. 9:829–839. 2021. View Article : Google Scholar : PubMed/NCBI | |
Deeks ED: Furmonertinib: First approval. Drugs. 81:1775–1780. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ahn MJ, Han JY, Kim SW, Ki Hyeong Lee5, Kim DW, Lee YG, Cho EK, Lee GW, Lee JS, Kim JH, et al: Lazertinib, a 3rd generation EGFR-TKI, in patients with EGFR-TKI resistant NSCLC: Updated results of phase I/II Study. Abstract #9037. May 31-June 4. 2019. | |
Kim SW, Ahn MJ, Han JY, Lee KH, Cho EK, Lee YG, Kim DW, Kim JH, Lee JS, Lee GW, et al: Intracranial anti-tumor activity of lazertinib in patients with advanced NSCLC who progressed after prior EGFR TKI therapy: Data from a phase I/II study. Am Soc Clin Oncol. 38:95712020. View Article : Google Scholar | |
Dhillon S: Lazertinib: First approval. Drugs. 81:1107–1113. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kim ES: Olmutinib: First global approval. Drugs. 76:1153–1157. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim DW, Lee DH, Han JY, Lee J, Cho BC, Kang JH, Lee KH, Cho EK, Kim JS, Min YJ, et al: Safety, tolerability, and anti-tumor activity of olmutinib in non-small cell lung cancer with T790M mutation: A single arm, open label, phase 1/2 trial. Lung Cancer. 135:66–72. 2019. View Article : Google Scholar : PubMed/NCBI | |
Park K, Jӓnne PA, Kim DW, Han JY, Wu MF, Lee JS, Kang JH, Lee DH, Cho BC, Yu CJ, et al: Olmutinib in T790M-positive non-small cell lung cancer after failure of first-line epidermal growth factor receptor-tyrosine kinase inhibitor therapy: A global, phase 2 study. Cancer. 127:1407–1416. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tan DS, Leighl NB, Riely GJ, Yang JC, Sequist LV, Wolf J, Seto T, Felip E, Aix SP, Jonnaert M, et al: Safety and efficacy of nazartinib (EGF816) in adults with EGFR-mutant non-small-cell lung carcinoma: A multicentre, open-label, phase 1 study. Lancet Respir Med. 8:561–572. 2020. View Article : Google Scholar : PubMed/NCBI | |
Costa DB, Schumer ST, Tenen DG and Kobayashi S: Differential responses to erlotinib in epidermal growth factor receptor (EGFR)-mutated lung cancers with acquired resistance to gefitinib carrying the L747S or T790M secondary mutations. J Clin Oncol. 26:1182–1184; author reply 1184–1186. 2008. View Article : Google Scholar | |
Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF, Chiang A, Yang G, Ouerfelli O, Kris MG, et al: Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res. 12:6494–6501. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bean J, Riely GJ, Balak M, Marks JL, Ladanyi M, Miller VA and Pao W: Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res. 14:7519–7525. 2008. View Article : Google Scholar : PubMed/NCBI | |
Grolleau E, Haddad V, Boissière L, Falchero L and Arpin D: Clinical efficacy of osimertinib in a patient presenting a double EGFR L747S and G719C mutation. J Thorac Oncol. 14:e151–e153. 2019. View Article : Google Scholar | |
Chiba M, Togashi Y, Bannno E, Kobayashi Y, Nakamura Y, Hayashi H, Terashima M, De Velasco MA, Sakai K, Fujita Y, et al: Efficacy of irreversible EGFR-TKIs for the uncommon secondary resistant EGFR mutations L747S, D761Y, and T854A. BMC Cancer. 17:2812017. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Tang J, Li X, Qin T and Wei Y: Durable response to osimertinib in a Chinese patient with metastatic lung adenocarcinoma harboring a rare EGFR L858R/D761Y compound mutation. Onco Targets Ther. 13:10447–10451. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Yang X, Ming Z, Shi J, Lv X, Li W, Yuan B, Chen Y, Liu B, Qin K, et al: Molecular characteristics of the uncommon EGFR Exon 21 T854A Mutation and response to osimertinib in patients with non-small cell lung cancer. Clin Lung Cancer. 23:311–319. 2022. View Article : Google Scholar : PubMed/NCBI | |
Patil T, Mushtaq R, Marsh S, Azelby C, Pujara M, Davies KD, Aisner DL, Purcell WT, Schenk EL, Pacheco JM, et al: Clinicopathologic characteristics, treatment outcomes, and acquired resistance patterns of atypical EGFR mutations and HER2 alterations in stage IV non-small-cell lung cancer. Clin Lung Cancer. 21:e191–e204. 2020. View Article : Google Scholar : PubMed/NCBI | |
Riudavets M, Sullivan I, Abdayem P and Planchard D: Targeting HER2 in non-small-cell lung cancer (NSCLC): A glimpse of hope? An updated review on therapeutic strategies in NSCLC harbouring HER2 alterations. ESMO Open. 6:1002602021. View Article : Google Scholar : PubMed/NCBI | |
Takezawa K, Pirazzoli V, Arcila ME, Nebhan CA, Song X, de Stanchina E, Ohashi K, Janjigian YY, Spitzler PJ, Melnick MA, et al: HER2 amplification: A potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2:922–933. 2012. View Article : Google Scholar : PubMed/NCBI | |
Elamin YY, Robichaux JP, Carter BW, Altan M, Gibbons DL, Fossella FV, Lam VK, Patel AB, Negrao MV, Le X, et al: Poziotinib for patients With HER2 Exon 20 mutant non-small-cell lung cancer: Results from a phase II Trial. J Clin Oncol. 40:702–709. 2022. View Article : Google Scholar | |
Song Z, Lv D, Chen SQ, Huang J, Li Y, Ying S, Wu X, Hua F, Wang W, Xu C, et al: Pyrotinib in patients with HER2-Amplified advanced non-small cell lung cancer: A prospective, multicenter, single-arm trial. Clin Cancer Res. 28:461–467. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Li X, Wang Q, Gao G, Zhang Y, Chen J, Shu Y, Hu Y, Fan Y, Fang J, et al: Pyrotinib in HER2-Mutant advanced lung adenocarcinoma after platinum-based chemotherapy: A multicenter, open-label, single-arm, phase II Study. J Clin Oncol. 38:2753–2761. 2020. View Article : Google Scholar | |
Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, Ulaner GA, Offin M, Feldman D, Hembrough T, et al: Ado-Trastuzumab emtansine for patients with HER2-Mutant lung cancers: Results from a phase II basket trial. J Clin Oncol. 36:2532–2537. 2018. View Article : Google Scholar | |
Li BT, Smit EF, Goto Y, Nakagawa K, Udagawa H, Mazières J, Nagasaka M, Bazhenova L, Saltos AN, Felip E, et al: Trastuzumab deruxtecan in HER2-Mutant non-small-cell lung cancer. N Engl J Med. 386:241–251. 2022. View Article : Google Scholar : PubMed/NCBI | |
Koch JP, Aebersold DM, Zimmer Y and Medová M: MET targeting: Time for a rematch. Oncogene. 39:2845–2862. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pasquini G and Giaccone G: C-MET inhibitors for advanced non-small cell lung cancer. Expert Opin Investig Drugs. 27:363–375. 2018. View Article : Google Scholar : PubMed/NCBI | |
Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al: MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 316:1039–1043. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, et al: MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA. 104:20932–20937. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, et al: Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 3:75ra262011. View Article : Google Scholar : PubMed/NCBI | |
Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M and Riely GJ: Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 19:2240–2247. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lai GG, Lim TH, Lim J, Liew PJ, Kwang XL, Nahar R, Aung ZW, Takano A, Lee YY, Lau DP, et al: Clonal MET amplification as a determinant of tyrosine kinase inhibitor resistance in epidermal growth factor receptor-mutant non-small-cell lung cancer. J Clin Oncol. 37:876–884. 2019. View Article : Google Scholar | |
Dulak AM, Gubish CT, Stabile LP, Henry C and Siegfried JM: HGF-independent potentiation of EGFR action by c-Met. Oncogene. 30:3625–3635. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Xu J, Sun B, Wang J and Wang Z: MET-Targeted therapies and clinical outcomes: A systematic literature review. Mol Diagn Ther. 26:203–227. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu YL, Zhang L, Kim DW, Liu X, Lee DH, Yang JC, Ahn MJ, Vansteenkiste JF, Su WC, Felip E, et al: Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-Mutated, MET factor-dysregulated non-small-cell lung cancer. J Clin Oncol. 36:3101–3109. 2018. View Article : Google Scholar | |
Wu YL, Cheng Y, Zhou J, Lu S, Zhang Y, Zhao J, Kim DW, Soo RA, Kim SW, Pan H, et al: Tepotinib plus gefitinib in patients with EGFR-mutant non-small-cell lung cancer with MET overexpression or MET amplification and acquired resistance to previous EGFR inhibitor (INSIGHT study): An open-label, phase 1b/2, multicentre, randomised trial. Lancet Respir Med. 8:1132–1143. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sequist LV, Han JY, Ahn MJ, Cho BC, Yu H, Kim SW, Yang JC, Lee JS, Su WC, Kowalski D, et al: Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 21:373–386. 2020. View Article : Google Scholar | |
Camidge D, Barlesi F, Goldman J, Morgensztern D, Heist R, Vokes E, Spira A, Angevin E, Su W, Hong D, Strickler J, Motwani M, Sun Z, et al: MA14. 03 EGFR M+ Subgroup of Phase 1b study of telisotuzumab vedotin (Teliso-V) plus erlotinib in c-Met+ non-small cell lung cancer. J Thor Oncol. 14:S305–S306. 2019. View Article : Google Scholar | |
McCoach CE, Yu A, Gandara DR, Riess JW, Vang DP, Li T, Lara PN, Gubens M, Lara F, Mack PC, et al: Phase I/II study of capmatinib plus erlotinib in patients with MET-positive non-small-cell lung cancer. JCO Precis Oncol. 1:PO.20.00279. 2021. | |
Camidge DR, Moran T, Demedts I, Grosch H, Mileham K, Molina J, Juan-Vidal O, Bepler G, Goldman JW, Park K, et al: A Randomized, open-label phase II study evaluating emibetuzumab plus erlotinib and emibetuzumab monotherapy in MET immunohistochemistry positive NSCLC patients with acquired resistance to erlotinib. Clin Lung Cancer. 23:300–310. 2022. View Article : Google Scholar : PubMed/NCBI | |
Alqahtani A, Ayesh HSK and Halawani H: PIK3CA gene mutations in solid malignancies: Association with clinicopathological parameters and prognosis. Cancers (Basel). 12:932019. View Article : Google Scholar | |
Wang Y, Wang Y, Li J, Li J and Che G: Clinical significance of PIK3CA gene in non-small-cell lung cancer: A systematic review and meta-analysis. Biomed Res Int. 2020:36082412020. | |
Qiu X, Wang Y, Liu F, Peng L, Fang C, Qian X, Zhang X, Wang Q, Xiao Z, Chen R, et al: Survival and prognosis analyses of concurrent PIK3CA mutations in EGFR mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors. Am J Cancer Res. 11:3189–3200. 2021.PubMed/NCBI | |
Song Z, Yu X and Zhang Y: Mutation and prognostic analyses of PIK3CA in patients with completely resected lung adenocarcinoma. Cancer Med. 5:2694–2700. 2016. View Article : Google Scholar : PubMed/NCBI | |
Engelman JA: Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer. 9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI | |
Westover D, Zugazagoitia J, Cho BC, Lovly CM and Paz-Ares L: Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol. 29 (Suppl 1):i10–i19. 2018. View Article : Google Scholar | |
Qu GP, Shi M, Wang D, Wu JH, Wang P, Gong ML and Zhang ZJ: Dual targeting of MEK and PI3K effectively controls the proliferation of human EGFR-TKI resistant non-small cell lung carcinoma cell lines with different genetic backgrounds. BMC Pulm Med. 21:2082021. View Article : Google Scholar : PubMed/NCBI | |
Markham AJD: Alpelisib: First global approval. Drugs. 79:1249–1253. 2019. View Article : Google Scholar : PubMed/NCBI | |
Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, Italiano A, Schuler M, Borghaei H, Barlesi F, et al: Sotorasib for lung cancers with KRAS p.G12C Mutation. N Engl J Med. 384:2371–2381. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tanaka N, Lin JJ, Li C, Ryan MB, Zhang J, Kiedrowski LA, Michel AG, Syed MU, Fella KA, Sakhi M, et al: Clinical acquired resistance to KRASG12C inhibition through a Novel KRAS Switch-II pocket mutation and polyclonal alterations converging on RAS-MAPK Reactivation. Cancer Discov. 11:1913–1922. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang SS; Nagasaka MJLCT and Therapy, : Spotlight on Sotorasib (AMG 510) for KRASG12C positive non-small cell lung cancer. Lung Cancer (Auckl). 12:115–122. 2021.PubMed/NCBI | |
Pratilas CA, Hanrahan AJ, Halilovic E, Persaud Y, Soh J, Chitale D, Shigematsu H, Yamamoto H, Sawai A, Janakiraman M, et al: Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res. 68:9375–9383. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ai X, Li Y, Chen R, Gu D and Mao Y: P59. 07 mutation profile of BRAF in Chinese non-small cell lung cancer patients. J Thorac Oncol. 16:S11492021. View Article : Google Scholar | |
Ohashi K, Sequist LV, Arcila ME, Moran T, Chmielecki J, Lin YL, Pan Y, Wang L, de Stanchina E, Shien K, et al: Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci USA. 109:E2127–E2133. 2012. View Article : Google Scholar : PubMed/NCBI | |
Odogwu L, Mathieu L, Blumenthal G, Larkins E, Goldberg KB, Griffin N, Bijwaard K, Lee EY, Philip R, Jiang X, et al: FDA approval summary: Dabrafenib and trametinib for the treatment of metastatic non-small cell lung cancers harboring BRAF V600E mutations. Oncologist. 23:740–745. 2018. View Article : Google Scholar | |
Zhu C, Wei Y and Wei X: AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Mol Cancer. 18:1532019. View Article : Google Scholar : PubMed/NCBI | |
Goyette MA and Côté JF: AXL receptor tyrosine kinase as a promising therapeutic target directing multiple aspects of cancer progression and metastasis. Cancers (Basel). 14:4662022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, Abdel-Rahman M, Wang X, Levine AD, Rho JK, et al: Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 44:852–860. 2012. View Article : Google Scholar | |
Sang YB, Kim JH, Kim CG, Hong MH, Kim HR, Cho BC and Lim SM: The Development of AXL inhibitors in lung cancer: Recent progress and challenges. Front Oncol. 12:8112472022. View Article : Google Scholar | |
Nishio M, Okamoto I, Murakami H, Horinouchi H, Toyozawa R, Takeda M, Uno M, Crawford N, Jimbo T, Ishigami M, et al: 570P A first-in-human phase I study of the AXL inhibitor DS-1205c in combination with gefitinib in subjects with EGFR-mutant NSCLC. Ann Oncol. 31:S4882020. View Article : Google Scholar | |
Byers LA, Gold KA and Peguero JA: Ph I/II study of oral selective AXL inhibitor bemcentinib (BGB324) in combination with erlotinib in patients with advanced EGFRm NSCLC: End of trial update. Wolters Kluwer Health; 2021, View Article : Google Scholar | |
Xun G, Hu W and Li B: PTEN loss promotes oncogenic function of STMN1 via PI3K/AKT pathway in lung cancer. Sci Rep. 11:143182021. View Article : Google Scholar : PubMed/NCBI | |
Ferrara MG, Martini M, D'Argento E, Forcella C, Vita E, Di Noia V, Sperduti I, Bilotta M, Ribelli M, Damiano P, et al: PTEN loss as a predictor of tumor heterogeneity and poor prognosis in patients with EGFR-mutant advanced non-small-cell lung cancer receiving tyrosine kinase inhibitors. Clin Lung Cancer. 22:351–360. 2021. View Article : Google Scholar : PubMed/NCBI | |
Redig AJ, Capelletti M, Dahlberg SE, Sholl LM, Mach S, Fontes C, Shi Y, Chalasani P and Jänne PA: Clinical and molecular characteristics of NF1-mutant lung cancer. Clin Cancer Res. 22:3148–3156. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheung HW, Du J, Boehm JS, He F, Weir BA, Wang X, Butaney M, Sequist LV, Luo B, Engelman JA, et al: Amplification of CRKL induces transformation and epidermal growth factor receptor inhibitor resistance in human non-small cell lung cancers. Cancer Discov. 1:608–625. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cortot AB, Repellin CE, Shimamura T, Capelletti M, Zejnullahu K, Ercan D, Christensen JG, Wong KK, Gray NS and Jänne PA: Resistance to irreversible EGF receptor tyrosine kinase inhibitors through a multistep mechanism involving the IGF1R pathway. Cancer Res. 73:834–843. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ware KE, Hinz TK, Kleczko E, Singleton KR, Marek LA, Helfrich BA, Cummings CT, Graham DK, Astling D, Tan AC and Heasley LE: A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis. 2:e392013. View Article : Google Scholar : PubMed/NCBI | |
Attili I, Passaro A, Pisapia P, Malapelle U and de Marinis F: Uncommon EGFR compound mutations in non-small cell lung cancer (NSCLC): A systematic review of available evidence. Curr Oncol. 29:255–266. 2022. View Article : Google Scholar | |
Hayashi T, Kohsaka S, Takamochi K, Hara K, Kishikawa S, Sano K, Takahashi F, Suehara Y, Saito T, Takahashi K, et al: Clinicopathological characteristics of lung adenocarcinoma with compound EGFR mutations. Hum Pathol. 103:42–51. 2020. View Article : Google Scholar | |
Rossi S, Damiano P, Toschi L, Finocchiaro G, Giordano L, Marinello A, Bria E, D'Argento E and Santoro A: Uncommon single and compound EGFR mutations: Clinical outcomes of a heterogeneous subgroup of NSCLC. Curr Probl Cancer. 46:1007872022. View Article : Google Scholar : PubMed/NCBI | |
Jiang D, Fu Y, Zhou X, Li Y, Cui Y, Hong L, Jin H, Shi K, Huang F, Zhang X, et al: The prognosis of EGFR complex mutation or co-mutation with tyrosine kinase inhibitor treatment in non-small cell lung cancer. Am Soc Clin Oncol. 40:e210862022. View Article : Google Scholar | |
Wang R, Pan S and Song X: Research Advances of EGFR-TP53 Co-mutation in advanced non-small cell lung cancer. Zhongguo Fei Ai Za Zhi. 25:174–182. 2022.(In Chinese). | |
Wang F, Zhao N, Gao G, Deng HB, Wang ZH, Deng LL, Yang Y and Lu C: Prognostic value of TP53 co-mutation status combined with EGFR mutation in patients with lung adenocarcinoma. J Cancer Res Clin Oncol. 146:2851–2859. 2020. View Article : Google Scholar | |
Cheng Y, Ma L, Liu Y, Zhu J, Xin Y, Liu X, Wang Y, Zhang T, Yang C, Wang S, et al: Comprehensive characterization and clinical impact of concomitant genomic alterations in EGFR-mutant NSCLCs treated with EGFR kinase inhibitors. Lung Cancer. 145:63–70. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li S, Lyu Z, Cai J, Zheng N, Li Y, Xu T and Zeng H: The co-mutation of EGFR and tumor-related genes leads to a worse prognosis and a higher level of tumor mutational burden in Chinese non-small cell lung cancer patients. J Thorac Dis. 14:185–193. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li HS, Liu CM and Wang Y: Limited role of KRAS mutation in guiding immunotherapy in advanced non-small-cell lung cancer. Future Oncol. 18:2433–2443. 2022. View Article : Google Scholar | |
Marcoux N, Gettinger SN, O'Kane G, Arbour KC, Neal JW, Husain H, Evans TL, Brahmer JR, Muzikansky A, Bonomi PD, et al: EGFR-Mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: Clinical outcomes. J Clin Oncol. 37:278–285. 2019. View Article : Google Scholar | |
Niederst MJ, Sequist LV, Poirier JT, Mermel CH, Lockerman EL, Garcia AR, Katayama R, Costa C, Ross KN, Moran T, et al: RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat Commun. 6:63772015. View Article : Google Scholar : PubMed/NCBI | |
Lee JK, Lee J, Kim S, Kim S, Youk J, Park S, An Y, Keam B, Kim DW, Heo DS, et al: Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J Clin Oncol. 35:3065–3074. 2017. View Article : Google Scholar | |
Offin M, Chan JM, Tenet M, Rizvi HA, Shen R, Riely GJ, Rekhtman N, Daneshbod Y, Quintanal-Villalonga A, Penson A, et al: Concurrent RB1 and TP53 alterations define a subset of EGFR-Mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J Thorac Oncol. 14:1784–1793. 2019. View Article : Google Scholar | |
Mambetsariev I, Arvanitis L, Fricke J, Pharaon R, Baroz AR, Afkhami M, Koczywas M, Massarelli E and Salgia R: Small cell lung cancer transformation following treatment in EGFR-Mutated non-small cell lung cancer. J Clin Med. 11:14292022. View Article : Google Scholar : PubMed/NCBI | |
Mc Leer A, Foll M, Brevet M, Antoine M, Novello S, Mondet J, Cadranel J, Girard N, Giaj Levra M, Demontrond P, et al: Detection of acquired TERT amplification in addition to predisposing p53 and Rb pathways alterations in EGFR-mutant lung adenocarcinomas transformed into small-cell lung cancers. Lung Cancer. 167:98–106. 2022. View Article : Google Scholar : PubMed/NCBI | |
Song KA, Niederst MJ, Lochmann TL, Hata AN, Kitai H, Ham J, Floros KV, Hicks MA, Hu H, Mulvey HE, et al: Epithelial-to-Mesenchymal transition antagonizes response to targeted therapies in lung cancer by suppressing BIM. Clin Cancer Res. 24:197–208. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shaurova T, Zhang L, Goodrich DW and Hershberger PA: Understanding lineage plasticity as a path to targeted therapy failure in EGFR-Mutant non-small cell lung cancer. Front Genet. 11:2812020. View Article : Google Scholar | |
Wang W, Xu C, Chen H, Jia J, Wang L, Feng H, Wang H, Song Z, Yang N and Zhang Y: Genomic alterations and clinical outcomes in patients with lung adenocarcinoma with transformation to small cell lung cancer after treatment with EGFR tyrosine kinase inhibitors: A multicenter retrospective study. Lung Cancer. 155:20–27. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhang S, Yao Y, Huang J, Peng K, Gao Q, Chen H, Xu C, Zhang X, Wu Y, Yang J, et al: MA12. 08 Chemotherapy plus EGFR TKIs or bevacizumab versus chemotherapy alone in SCLC-transformed EGFR-mutant lung adenocarcinoma. J Thor Oncol. 16:S178–S179. 2021. View Article : Google Scholar | |
Kuiper JL, Ronden MI, Becker A, Heideman DA, van Hengel P, Ylstra B, Thunnissen E and Smit EF: Transformation to a squamous cell carcinoma phenotype of an EGFR-mutated NSCLC patient after treatment with an EGFR-tyrosine kinase inhibitor. J Clin Pathol. 68:320–321. 2015. View Article : Google Scholar | |
Levin PA, Mayer M, Hoskin S, Sailors J, Oliver DH and Gerber DE: Histologic transformation from adenocarcinoma to squamous cell carcinoma as a mechanism of resistance to EGFR inhibition. J Thorac Oncol. 10:e86–e88. 2015. View Article : Google Scholar | |
Longo L, Mengoli MC, Bertolini F, Bettelli S, Manfredini S and Rossi G: Synchronous occurrence of squamous-cell carcinoma ‘transformation’ and EGFR exon 20 S768I mutation as a novel mechanism of resistance in EGFR-mutated lung adenocarcinoma. Lung Cancer. 103:24–26. 2017. View Article : Google Scholar : PubMed/NCBI | |
Roca E, Pozzari M, Vermi W, Tovazzi V, Baggi A, Amoroso V, Nonnis D, Intagliata S and Berruti A: Outcome of EGFR-mutated adenocarcinoma NSCLC patients with changed phenotype to squamous cell carcinoma after tyrosine kinase inhibitors: A pooled analysis with an additional case. Lung Cancer. 127:12–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liao J, Li Y, Liu C, Long Q and Wang J: Case report: EGFR-Positive early-stage lung adenocarcinoma transforming to squamous cell carcinoma after TKI treatment. Front Oncol. 11:6968812021. View Article : Google Scholar | |
Jukna A, Montanari G, Mengoli MC, Cavazza A, Covi M, Barbieri F, Bertolini F and Rossi G: Squamous Cell Carcinoma ‘Transformation’ concurrent with secondary T790M mutation in resistant EGFR-Mutated Adenocarcinomas. J Thorac Oncol. 11:e49–e51. 2016. View Article : Google Scholar | |
Bugano DDG, Kalhor N, Zhang J, Neskey M and William WN Jr: Squamous-cell transformation in a patient with lung adenocarcinoma receiving erlotinib: Co-occurrence with T790M mutation. Cancer Treat Comm. 4:34–36. 2015. View Article : Google Scholar | |
Park S, Shim JH, Lee B, Cho I, Park WY, Kim Y, Lee SH, Choi Y, Han J, Ahn JS, et al: Paired genomic analysis of squamous cell carcinoma transformed from EGFR-mutated lung adenocarcinoma. Lung Cancer. 134:7–15. 2019. View Article : Google Scholar : PubMed/NCBI | |
Weng CH, Chen LY, Lin YC, Shih JY, Lin YC, Tseng RY, Chiu AC, Yeh YH, Liu C, Lin YT, et al: Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene. 38:455–468. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brabletz S, Schuhwerk H, Brabletz T and Stemmler MP: Dynamic EMT: A multi-tool for tumor progression. EMBO J. 40:e1086472021. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Chen L, Liu L and Niu X: EMT-Mediated Acquired EGFR-TKI resistance in NSCLC: Mechanisms and strategies. Front Oncol. 9:10442019. View Article : Google Scholar | |
Miralaei N, Majd A, Ghaedi K, Peymani M and Safaei M: Integrated pan-cancer of AURKA expression and drug sensitivity analysis reveals increased expression of AURKA is responsible for drug resistance. Cancer Med. 10:6428–6441. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nilsson MB, Sun H, Robichaux J, Pfeifer M, McDermott U, Travers J, Diao L, Xi Y, Tong P, Shen L, et al: A YAP/FOXM1 axis mediates EMT-associated EGFR inhibitor resistance and increased expression of spindle assembly checkpoint components. Sci Transl Med. 12:eaaz45892020. View Article : Google Scholar : PubMed/NCBI | |
Wang CY, Lee MH, Kao YR, Hsiao SH, Hong SY and Wu CW: Alisertib inhibits migration and invasion of EGFR-TKI resistant cells by partially reversing the epithelial-mesenchymal transition. Biochim Biophys Acta Mol Cell Res. 1868:1190162021. View Article : Google Scholar : PubMed/NCBI | |
Yeh CT, Chen TT, Satriyo PB, Wang CH, Wu ATH, Chao TY, Lee KY, Hsiao M, Wang LS and Kuo KT: Bruton's tyrosine kinase (BTK) mediates resistance to EGFR inhibition in non-small-cell lung carcinoma. Oncogenesis. 10:562021. View Article : Google Scholar : PubMed/NCBI | |
Liao BC, Griesing S and Yang JC: Second-line treatment of EGFR T790M-negative non-small cell lung cancer patients. Ther Adv Med Oncol. Nov 25–2019.(Epub ahead of print). View Article : Google Scholar | |
Lee CK, Man J, Lord S, Links M, Gebski V, Mok T and Yang JC: Checkpoint Inhibitors in Metastatic EGFR-Mutated non-small cell lung cancer-A meta-analysis. J Thorac Oncol. 12:403–407. 2017. View Article : Google Scholar | |
Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, Herbst RS, Gralla RJ, Mok T and Yang JC: Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: A systematic review and meta-analysis. JAMA Oncol. 4:210–216. 2018. View Article : Google Scholar | |
Yang CY, Liao WY, Ho CC, Chen KY, Tsai TH, Hsu CL, Su KY, Chang YL, Wu CT, Hsu CC, et al: Association between programmed death-ligand 1 expression, immune microenvironments, and clinical outcomes in epidermal growth factor receptor mutant lung adenocarcinoma patients treated with tyrosine kinase inhibitors. Eur J Cancer. 124:110–122. 2020. View Article : Google Scholar : PubMed/NCBI | |
Isomoto K, Haratani K, Hayashi H, Shimizu S, Tomida S, Niwa T, Yokoyama T, Fukuda Y, Chiba Y, Kato R, et al: Impact of EGFR-TKI treatment on the tumor immune microenvironment in EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res. 26:2037–2046. 2020. View Article : Google Scholar : PubMed/NCBI | |
Reck M, Mok TS, Nishio M, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, et al: Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir Med. 7:387–401. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu SG, Ho CC, Yang JC, Lia BC, Yang CY, Lin YT, Yu CJ, Liao WY and Shih JY: 12P A phase II study of atezolizumab in combination with bevacizumab, carboplatin or cisplatin, and pemetrexed for EGFR-mutant metastatic NSCLC patients after failure of EGFR TKIs. Ann Oncol. 33:S33–S34. 2022. View Article : Google Scholar | |
Lam TC, Tsang KC, Choi HC, Lee VH, Lam KO, Chiang CL, So TH, Chan WW, Nyaw SF, Lim F, et al: Combination atezolizumab, bevacizumab, pemetrexed and carboplatin for metastatic EGFR mutated NSCLC after TKI failure. Lung Cancer. 159:18–26. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ren S, Zhang J, Zhao Y, Zhou J, Fan Y, Shu Y, Liu X, Zhang H, He J, Gao G, et al: A multi-center phase II study of toripalimab with chemotherapy in patients with EGFR mutant advanced NSCLC patients resistant to EGFR TKIs: Efficacy and biomarker analysis. Am Soc Clin Oncol. 6:3552020. | |
Jiang T, Wang P, Zhang J, Zhao Y, Zhou J, Fan Y, Shu Y, Liu X, Zhang H, He J, et al: Toripalimab plus chemotherapy as second-line treatment in previously EGFR-TKI treated patients with EGFR-mutant-advanced NSCLC: A multicenter phase-II trial. Signal Transduct Target Ther. 6:3552021. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Wu L, Jian H, Cheng Y, Wang Q, Fang J, Wang Z, Hu Y, Sun M, Han L, et al: VP9-2021: ORIENT-31: Phase III study of sintilimab with or without IBI305 plus chemotherapy in patients with EGFR mutated nonsquamous NSCLC who progressed after EGFR-TKI therapy. Ann Oncol. 33:112–113. 2022. View Article : Google Scholar | |
Hayashi H, Sugawara S, Fukuda Y, Fujimoto D, Miura S, Ota K, Ozawa Y, Hara S, Tanizaki J, Azuma K, et al: A randomized phase II study comparing nivolumab with carboplatin-pemetrexed for EGFR-mutated NSCLC with resistance to EGFR tyrosine kinase inhibitors (WJOG8515L). Clin Cancer Res. 28:893–902. 2022. View Article : Google Scholar : PubMed/NCBI | |
de Rouw N, Piet B, Derijks HJ, van den Heuvel MM and Ter Heine R: Mechanisms, management and prevention of pemetrexed-related toxicity. Drug Saf. 44:1271–1281. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liang SK, Keng LT, Chang CH, Wen YF, Lee MR, Yang CY, Wang JY, Ko JC, Shih JY and Yu CJ: Treatment options of first-line tyrosine kinase inhibitors and subsequent systemic chemotherapy agents for advanced EGFR mutant lung adenocarcinoma patients: Implications from Taiwan cancer registry cohort. Front Oncol. 10:5903562021. View Article : Google Scholar | |
Li Z, Guo H, Lu Y, Hu J, Luo H and Gu W: Chemotherapy with or without pemetrexed as second-line regimens for advanced non-small-cell lung cancer patients who have progressed after first-line EGFR TKIs: A systematic review and meta-analysis. Onco Targets Ther. 11:3697–3703. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yoo KH, Lee SJ, Cho J, Lee KH, Park KU, Kim KH, Cho EK, Choi YH, Kim HR, Kim HG, et al: A randomized, open-label, Phase II study comparing pemetrexed plus cisplatin followed by maintenance pemetrexed versus pemetrexed alone in patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer after failure of first-line EGFR tyrosine kinase inhibitor: KCSG-LU12-13. Cancer Res Treat. 51:718–726. 2019. View Article : Google Scholar | |
Le X, Nilsson M, Goldman J, Reck M, Nakagawa K, Kato T, Ares LP, Frimodt-Moller B, Wolff K, Visseren-Grul C, et al: Dual EGFR-VEGF Pathway inhibition: A promising strategy for patients with EGFR-Mutant NSCLC. J Thorac Oncol. 16:205–215. 2021. View Article : Google Scholar | |
Lian Z, Du W, Zhang Y, Fu Y, Liu T, Wang A, Cai T, Zhu J, Zeng Y, Liu Z and Huang JA: Anlotinib can overcome acquired resistance to EGFR-TKIs via FGFR1 signaling in non-small cell lung cancer without harboring EGFR T790M mutation. Thorac Cancer. 11:1934–1943. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Cao H, Cui Y, Jin S, Gao W, Huang C and Guo R: Concurrent use of anlotinib overcomes acquired resistance to EGFR-TKI in patients with advanced EGFR-mutant non-small cell lung cancer. Thorac Cancer. 12:2574–2584. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hata A, Katakami N, Kaji R, Yokoyama T, Kaneda T, Tamiya M, Inoue T, Kimura H, Yano Y, Tamura D, et al: Afatinib plus bevacizumab combination after acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: Multicenter, single-arm, phase 2 trial (ABC Study). Cancer. 124:3830–3838. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Wang D, Li X, Mao K, Wang J, Li P, Shi X, Zhang S and Wang Y: An advanced non-small cell lung cancer patient with EGFR and KRAS mutations, and PD-L1 positive, benefited from immunotherapy: A case report. Ann Transl Med. 10:3812022. View Article : Google Scholar : PubMed/NCBI | |
Bai M, Wang W, Gao X, Wu L, Jin P, Wu H, Yu J and Meng X: Efficacy of immune checkpoint inhibitors in patients with EGFR Mutated NSCLC and potential risk factors associated with prognosis: A single institution experience. Front Immunol. 13:8324192022. View Article : Google Scholar | |
Mu Y, Hao X, Xing P, Hu X, Wang Y, Li T, Zhang J, Xu Z and Li J: Acquired resistance to osimertinib in patients with non-small-cell lung cancer: Mechanisms and clinical outcomes. J Cancer Res Clin Oncol. 146:2427–2433. 2020. View Article : Google Scholar | |
Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E and Tiseo M: Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 121:725–737. 2019. View Article : Google Scholar : PubMed/NCBI | |
He J, Huang Z, Han L, Gong Y and Xie C: Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer (Review). Int J Oncol. 59:902021. View Article : Google Scholar | |
Papadimitrakopoulou V, Wu YL, Han JY, Ahn MJ, Ramalingam SS, John T, Okamoto I, Yang JC, Bulusu K, Laus G, et al: Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study. Annal Oncol. 29:viii7412018. View Article : Google Scholar | |
Piotrowska Z, Nagy R, Fairclough S, Lanman R, Marcoux N, Gettinger S, Owonikoko T, Ramalingam S and Sequist L: Characterizing the genomic landscape of EGFR C797S in lung cancer using ctDNA next-generation sequencing. J Thorac Oncol. 12:S17672017. View Article : Google Scholar | |
Wang X, Zhou L, Yin JC, Wu X, Shao YW and Gao B: Lung adenocarcinoma harboring EGFR 19del/C797S/T790M triple mutations responds to brigatinib and Anti-EGFR antibody combination therapy. J Thorac Oncol. 14:e85–e88. 2019. View Article : Google Scholar | |
Chang Y, Liu S, Jiang Y, Hua L and Wen L: Effective treatment of pulmonary adenocarcinoma harboring triple EGFR mutations of L858R, T790M, cis-G796s/cis-C797s by osimertinib, brigatinib, and bevacizumab combination therapy: A case report. Respir Med Case Rep. 36:1015822022.PubMed/NCBI | |
Zhou R, Song L, Zhang W, Shao L and Li X and Li X: Combination of osimertinib and anlotinib may overcome the resistance mediated by in cis EGFR T790M-C797S in NSCLC: A case report. Onco Targets Ther. 14:2847–2851. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Xu H, Ma L, Yang L, Yang G, Zhang S, Ai X, Zhang S and Wang Y: Possibility of brigatinib-based therapy, or chemotherapy plus anti-angiogenic treatment after resistance of osimertinib harboring EGFR T790M-cis-C797S mutations in lung adenocarcinoma patients. Cancer Med. 10:8328–8337. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Chen Y, Huang H, Li X, Shao L and Ding H: Significant benefits of afatinib and apatinib in a refractory advanced NSCLC patient resistant to osimertinib: A case report. OncoTargets Ther. 14:3063–3067. 2021. View Article : Google Scholar | |
Yang Z, Yang N, Ou Q, Xiang Y, Jiang T, Wu X, Bao H, Tong X, Wang X, Shao YW, et al: Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin Cancer Res. 24:3097–3107. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, He B, Zhou D, Li M and Hu C: Newly emergent acquired EGFR exon 18 G724S mutation after resistance of a T790M specific EGFR inhibitor osimertinib in non-small-cell lung cancer: A case report. OncoTargets Ther. 12:51–56. 2018. View Article : Google Scholar | |
Schoenfeld AJ, Chan JM, Kubota D, Sato H, Rizvi H, Daneshbod Y, Chang JC, Paik PK, Offin M, Arcila ME, et al: Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-Mutant lung cancer. Clin Cancer Res. 26:2654–2663. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fairclough SR, Kiedrowski LA, Lin JJ, Zelichov O, Tarcic G, Stinchcombe TE, Odegaard JI, Lanman RB, Shaw AT and Nagy RJ: Identification of osimertinib-resistant EGFR L792 mutations by cfDNA sequencing: oncogenic activity assessment and prevalence in large cfDNA cohort. Exp Hematol Oncol. 8:242019. View Article : Google Scholar | |
Ma L, Chen R, Wang F, Ma LL, Yuan MM, Chen RR and Liu J: EGFR L718Q mutation occurs without T790M mutation in a lung adenocarcinoma patient with acquired resistance to osimertinib. Ann Transl Med. 7:2072019. View Article : Google Scholar : PubMed/NCBI | |
Fang W, Huang Y, Gan J, Zheng Q and Zhang L: Emergence of EGFR G724S after progression on osimertinib responded to afatinib monotherapy. J Thorac Oncol. 15:e36–e37. 2020. View Article : Google Scholar | |
Zhang Y, Yang Q, Zeng X, Wang M, Dong S, Yang B, Tu X, Wei T, Xie W, Zhang C, et al: MET amplification attenuates lung tumor response to immunotherapy by inhibiting STING. Cancer Discov. 11:2726–2737. 2021. View Article : Google Scholar : PubMed/NCBI | |
Syed YY: Amivantamab: First approval. Drugs. 81:1349–1353. 2021. View Article : Google Scholar : PubMed/NCBI | |
Amivantamab OK'd for EGFR-Mutant NSCLC, . Cancer Discov. 11:16042021. View Article : Google Scholar | |
Neijssen J, Cardoso RM, Chevalier KM, Wiegman L, Valerius T, Anderson GM, Moores SL, Schuurman J, Parren PW, Strohl WR and Chiu ML: Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem. 296:1006412021. View Article : Google Scholar : PubMed/NCBI | |
Planchard D, Loriot Y, André F, Gobert A, Auger N, Lacroix L and Soria JC: EGFR-independent mechanisms of acquired resistance to AZD9291 in EGFR T790M-positive NSCLC patients. Ann Oncol. 26:2073–2078. 2015. View Article : Google Scholar | |
Ramalingam S, Cheng Y, Zhou C, Ohe Y, Imamura F, Cho BC, Lin M, Majem M, Shah R, Rukazenkov Y, et al: Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase III FLAURA study. OncologyPro. 29:viii7402018. | |
Oxnard GR, Hu Y, Mileham KF, Husain H, Costa DB, Tracy P, Feeney N, Sholl LM, Dahlberg SE, Redig AJ, et al: Assessment of resistance mechanisms and clinical implications in patients With EGFR T790M-Positive lung cancer and acquired resistance to osimertinib. JAMA Oncol. 4:1527–1534. 2018. View Article : Google Scholar | |
Qu F, Zhou Y and Yu WJA-CD: A review of research progress on mechanisms and overcoming strategies of acquired osimertinib resistance. Anticancer Drugs. 33:e76–e83. 2022. View Article : Google Scholar : PubMed/NCBI | |
Beenken A and Mohammadi M: The FGF family: Biology, pathophysiology and therapy. Nat Rev Drug Discov. 8:235–253. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Liu Y, Oeck S, Zhang GJ, Schramm A and Glazer PM: Hypoxia induces resistance to EGFR inhibitors in lung cancer cells via upregulation of FGFR1 and the MAPK pathway. Cancer Res. 80:4655–4667. 2020. View Article : Google Scholar : PubMed/NCBI | |
Quintanal-Villalonga A, Molina-Pinelo S, Cirauqui C, Ojeda-Márquez L, Marrugal Á, Suarez R, Conde E, Ponce-Aix S, Enguita AB, Carnero A, et al: FGFR1 Cooperates with EGFR in lung cancer oncogenesis, and their combined inhibition shows improved efficacy. J Thorac Oncol. 14:641–655. 2019. View Article : Google Scholar | |
Hayakawa D, Takahashi F, Mitsuishi Y, Tajima K, Hidayat M, Winardi W, Ihara H, Kanamori K, Matsumoto N, Asao T, et al: Activation of insulin-like growth factor-1 receptor confers acquired resistance to osimertinib in non-small cell lung cancer with EGFR T790M mutation. Thorac Cancer. 11:140–149. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wang H and He C: Drug resistance of targeted therapy for advanced non-small cell lung cancer harbored EGFR mutation: From mechanism analysis to clinical strategy. J Cancer Res Clin Oncol. 147:3653–3664. 2021. View Article : Google Scholar | |
Makimoto G, Ninomiya K, Kubo T, Sunami R, Kato Y, Ichihara E, Ohashi K, Rai K, Hotta K, Tabata M, et al: A novel osimertinib-resistant human lung adenocarcinoma cell line harbouring mutant EGFR and activated IGF1R. Jpn J Clin Oncol. 51:956–965. 2021. View Article : Google Scholar | |
Wang R, Yamada T, Kita K, Taniguchi H, Arai S, Fukuda K, Terashima M, Ishimura A, Nishiyama A, Tanimoto A, et al: Transient IGF-1R inhibition combined with osimertinib eradicates AXL-low expressing EGFR mutated lung cancer. Nat Commun. 11:46072020. View Article : Google Scholar : PubMed/NCBI | |
Lin CC, Shih JY, Yu CJ, Ho CC, Liao WY, Lee JH, Tsai TH, Su KY, Hsieh MS, Chang YL, et al: Outcomes in patients with non-small-cell lung cancer and acquired Thr790Met mutation treated with osimertinib: A genomic study. Lancet Respir Med. 6:107–116. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jia Y, Yun CH, Park E, Ercan D, Manuia M, Juarez J, Xu C, Rhee K, Chen T, Zhang H, et al: Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature. 534:129–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
To C, Jang J, Chen T, Park E, Mushajiang M, De Clercq DJH, Xu M, Wang S, Cameron MD, Heppner DE, et al: Single and dual targeting of mutant EGFR with an allosteric inhibitor. Cancer Discov. 9:926–943. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tripathi SK and Biswal BK: Allosteric mutant-selective fourth-generation EGFR inhibitors as an efficient combination therapeutic in the treatment of non-small cell lung carcinoma. Drug Discov Today. 26:1466–1472. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kashima K, Kawauchi H, Tanimura H, Tachibana Y, Chiba T, Torizawa T and Sakamoto H: CH7233163 overcomes osimertinib-resistant EGFR-Del19/T790M/C797S Mutation. Mol Cancer Ther. 19:2288–2297. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schalm S, Dineen T, Lim S, Park CW, Hsieh J, Woessner R, Zhang Z, Wilson K, Eno M, Wilson D, et al: 1296P BLU-945, a highly potent and selective 4th generation EGFR TKI for the treatment of EGFR T790M/C797S resistant NSCLC. Ann Oncol. 31:S8392020. View Article : Google Scholar | |
Conti C, Campbell J, Woessner R, Guo J, Timsit Y, Iliou M, Wardwell S, Davis A, Chicklas S, Hsieh J, et al: BLU-701 is a highly potent, brain-penetrant and WT-sparing next-generation EGFR TKI for the treatment of sensitizing (ex19del, L858R) and C797S resistance mutations in metastatic NSCLC. Cancer Res. 81 (Suppl 13):12622021. View Article : Google Scholar | |
Lim SM, Park CW, Zhang Z, Woessner R, Dineen T, Stevison F, Hsieh J, Eno M, Wilson D, Campbell J, et al: BLU-945, a fourth-generation, potent and highly selective epidermal growth factor receptor tyrosine kinase inhibitor with intracranial activity, demonstrates robust in vivo anti-tumor activity in models of osimertinib-resistant non-small cell lung cancer. Cancer Res. 81 (Suppl 13):14672021. View Article : Google Scholar | |
Tavera L, Zhang Z, Wardwell S, Job E, McGinn K, Chen M, Iliou M, Albayya F, Campbell J, Eno M, et al: BLU-701 tumour suppression and intracranial activity as a single agent and in combination with BLU-945 in models of non-small cell lung cancer (NSCLC) driven by EGFR mutations. Mol Cell Biol. 165:S372022. | |
Liu X, Zhang X, Yang L, Chen S, Tian X, Dong T, Ding CZ, Hu L, Wu L, Zhao L, Mao J, et al: Preclinical evaluation of TQB3804, a potent EGFR C797S inhibitor. Cancer Res. 79 (Suppl 13):13202019. View Article : Google Scholar | |
Huang J and Wang H: Targeted therapy and mechanism of drug resistance in non-small cell lung cancer with epidermal growth factor receptor gene mutation. Zhongguo Fei Ai Za Zhi. 25:183–192. 2022.(In Chinese). | |
Lim S, Kim DW, Jung JE, Lee G, Ryou JH, Kang SU, Lee YH, Shin HJ, Yum SY and Yim Ε: A Phase 1/2, open-label study of BBT-176, a triple mutation targeting EGFR TKI, in patients with NSCLC who progressed after prior EGFR TKI therapy. Ann Oncol. 32:S949–S1039. 2021. View Article : Google Scholar | |
Lim S, Kim D and Jung J: A phase I/II, open-label study of BBT-176, a triple mutation targeting EGFR TKI, in patients with NSCLC who progressed after prior EGFR TKI therapy. Ann Oncol. 32:S1035(Suppl 5):2021. | |
Park K, Haura EB, Leighl NB, Mitchell P, Shu CA, Girard N, Viteri S, Han JY, Kim SW, Lee CK, et al: Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: Initial results from the CHRYSALIS phase I study. J Clin Oncol. 39:3391–3402. 2021. View Article : Google Scholar | |
Cho B, Lee K, Cho E, Kim DW, Lee JS, Han JY, Kim SW, Spira A, Haura EB, Sabari JK, et al: 1258O Amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in combination with lazertinib, a 3rd-generation tyrosine kinase inhibitor (TKI), in advanced EGFR NSCLC. Ann Oncol. 31:S813(Suppl 4):2020. View Article : Google Scholar | |
Yu H, Johnson M, Steuer C, Vigliotti M, Chen S, Kamai Y, Yu C and Jänne P: Preliminary phase 1 results of U3-1402-A novel HER3-targeted antibody-drug conjugate-in EGFR TKI-resistant, EGFR-mutant NSCLC. Mol Cell Biol. 14:S336–S337. 2019. | |
Jänne PA, Baik C, Su WC, Johnson ML, Hayashi H, Nishio M, Kim DW, Koczywas M, Gold KA, Steuer CE, et al: Efficacy and safety of patritumab deruxtecan (HER3-DXd) in EGFR inhibitor-resistant, EGFR-mutated non-small cell lung cancer. Cancer Discov. 12:74–89. 2022. View Article : Google Scholar | |
Soo RA, Han JY, Dafni U, Cho BC, Yeo CM, Nadal E, Carcereny E, de Castro J, Sala MA, Bernabé R, et al: A randomised phase II study of osimertinib and bevacizumab versus osimertinib alone as second-line targeted treatment in advanced NSCLC with confirmed EGFR and acquired T790M mutations: The European Thoracic Oncology Platform (ETOP 10–16) BOOSTER trial. Ann Oncol. 33:181–192. 2022. View Article : Google Scholar | |
Cui Q, Hu Y, Cui Q, Wu D, Mao Y, Ma D and Liu H: Osimertinib rechallenge with bevacizumab vs. chemotherapy plus bevacizumab in EGFR-Mutant NSCLC patients with osimertinib resistance. Front Pharmacol. 12:7467072022. View Article : Google Scholar | |
Sequist L, Peled N, Tufman A, Servidio L, Li J, Taylor R and Zhao J: COMPEL: Chemotherapy with/without osimertinib in patients with EGFRm advanced NSCLC and progression on first-line osimertinib. J Thor Oncol. 16:S11012021. View Article : Google Scholar | |
Han B, Li K, Wang Q, Zhang L, Shi J, Wang Z, Cheng Y, He J, Shi Y, Zhao Y, et al: Effect of anlotinib as a third-line or further treatment on overall survival of patients with advanced non-small cell lung cancer: The ALTER 0303 phase 3 Randomized clinical trial. JAMA Oncol. 4:1569–1575. 2018. View Article : Google Scholar | |
Tamiya M, Kunimasa K, Nishino K, Matsumoto S, Kawachi H, Kuno K, Inoue T, Kuhara H, Imamura F, Goto K and Kumagai T: Successful treatment of an osimertinib-resistant lung adenocarcinoma with an exon 18 EGFR mutation (G719S) with afatinib plus bevacizumab. Invest New Drugs. 39:232–236. 2021. View Article : Google Scholar : PubMed/NCBI | |
Blakely CM, Watkins TBK, Wu W, Gini B, Chabon JJ, McCoach CE, McGranahan N, Wilson GA, Birkbak NJ, Olivas VR, et al: Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet. 49:1693–1704. 2017. View Article : Google Scholar | |
Dagogo-Jack I and Shaw AT: Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 15:81–94. 2018. View Article : Google Scholar | |
Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CPR and Vasconcelos MH: The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat. 46:1006452019. View Article : Google Scholar | |
Zhang Y, Wang D, Peng M, Tang L, Ouyang J, Xiong F, Guo C, Tang Y, Zhou Y, Liao Q, et al: Single-cell RNA sequencing in cancer research. J Exp Clin Cancer Res. 40:812021. View Article : Google Scholar : PubMed/NCBI | |
Maynard A, McCoach CE, Rotow JK, Harris L, Haderk F, Kerr DL, Yu EA, Schenk EL, Tan W, Zee A, et al: Therapy-Induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell. 182:1232–1251.e22. 2020. View Article : Google Scholar | |
Kim DW and Cho JY: Recent advances in allogeneic CAR-T cells. Biomolecules. 10:2632020. View Article : Google Scholar | |
Patel AJ, Richter A, Drayson MT and Middleton GW: The role of B lymphocytes in the immuno-biology of non-small-cell lung cancer. Cancer Immunol Immunother. 69:325–342. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hung LVM, Ngo HT and Van Pham P: Clinical trials with cytokine-induced killer cells and CAR-T cell transplantation for non-small cell lung cancer treatment. Adv Exp Med Biol. 1292:113–130. 2020. View Article : Google Scholar | |
Johnson LA and June CH: Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 27:38–58. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Zhang Q, Tian K, Wang H, Yin H and Zheng J: Current status and future prospects of the strategy of combining CAR-T with PD-1 blockade for antitumor therapy (Review). Mol Med Rep. 17:2083–2088. 2018.PubMed/NCBI | |
Kandra P, Nandigama R, Eul B, Huber M, Kobold S, Seeger W, Grimminger F and Savai R: Utility and drawbacks of chimeric antigen receptor T Cell (CAR-T) therapy in lung cancer. Front Immunol. 13:9035622022. View Article : Google Scholar | |
Xu C, Ju D and Zhang X: Chimeric antigen receptor T-cell therapy: Challenges and opportunities in lung cancer. Antib Ther. 5:73–83. 2022.PubMed/NCBI | |
Yang P, Qiao Y, Meng M and Zhou Q: Cancer/Testis antigens as biomarker and target for the diagnosis, prognosis, and therapy of lung cancer. Front Oncol. 12:8641592022. View Article : Google Scholar | |
Yeku O, Li X and Brentjens RJ: Adoptive T-Cell therapy for solid tumors. Am Soc Clin Oncol Educ Book. 37:193–204. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reppel L, Tsahouridis O, Akulian J, Davis IJ, Lee H, Fucà G, Weiss J, Dotti G, Pecot CV and Savoldo B: Targeting disialoganglioside GD2 with chimeric antigen receptor-redirected T cells in lung cancer. J Immunother Cancer. 10:e0038972022. View Article : Google Scholar : PubMed/NCBI | |
Min J, Long C, Zhang L, Duan J, Fan H, Chu F and Li Z: c-Met specific CAR-T cells as a targeted therapy for non-small cell lung cancer cell A549. Bioengineered. 13:9216–9232. 2022. View Article : Google Scholar : PubMed/NCBI | |
Feng K, Guo Y, Dai H, Wang Y, Li X, Jia H and Han W: Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci. 59:468–479. 2016. View Article : Google Scholar | |
Xiao BF, Zhang JT, Zhu YG, Cui XR, Lu ZM, Yu BT and Wu N: Chimeric antigen receptor T-Cell therapy in lung cancer: Potential and challenges. Front Immunol. 12:7827752021. View Article : Google Scholar | |
Qu J, Mei Q, Chen L and Zhou J: Chimeric antigen receptor (CAR)-T-cell therapy in non-small-cell lung cancer (NSCLC): Current status and future Aperspectives. Cancer Immunol Immunother. 70:619–631. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Chen F, Li J, Pu Y, Yang C, Wang Y, Lei Y and Huang Y: CAR-T cell therapy for lung cancer: Potential and perspective. Thorac Cancer. 13:889–899. 2022. View Article : Google Scholar : PubMed/NCBI | |
Vasic D, Lee JB, Leung Y, Khatri I, Na Y, Abate-Daga D and Zhang L: Allogeneic double-negative CAR-T cells inhibit tumor growth without off-tumor toxicities. Sci Immunol. 7:eabl36422022. View Article : Google Scholar |