Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review)
- Authors:
- Tao Wang
- Junting Li
- Jun Du
- Wei Zhou
- Guang Lu
-
Affiliations: Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China, Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China, Department of Ultrasonic Examination, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China, Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China - Published online on: December 20, 2024 https://doi.org/10.3892/ol.2024.14856
- Article Number: 110
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tanoue T and Takeichi M: New insights into Fat cadherins. J Cell Sci. 118:2347–2353. 2005. View Article : Google Scholar : PubMed/NCBI | |
Irshad K, Malik N, Arora M, Gupta Y, Sinha S and Chosdol K: The quest for ligands and binding partners of atypical cadherin FAT1. Transl Oncol. 14:1010972021. View Article : Google Scholar : PubMed/NCBI | |
Dunne J, Hanby AM, Poulsom R, Jones TA, Sheer D, Chin WG, Da SM, Zhao Q, Beverley PC and Owen MJ: Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics. 30:207–223. 1995. View Article : Google Scholar : PubMed/NCBI | |
Sadeqzadeh E, de Bock CE, Zhang XD, Shipman KL, Scott NM, Song C, Yeadon T, Oliveira CS, Jin B, Hersey P, et al: Dual processing of FAT1 cadherin protein by human melanoma cells generates distinct protein products. J Biol Chem. 286:28181–28191. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cao LL, Riascos-Bernal DF, Chinnasamy P, Dunaway CM, Hou R, Pujato MA, O'Rourke BP, Miskolci V, Guo L, Hodgson L, et al: Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 539:575–578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Magg T, Schreiner D, Solis GP, Bade EG and Hofer HW: Processing of the human protocadherin Fat1 and translocation of its cytoplasmic domain to the nucleus. Exp Cell Res. 307:100–108. 2005. View Article : Google Scholar : PubMed/NCBI | |
Riascos-Bernal DF, Maira A and Sibinga NES: The atypical cadherin FAT1 limits mitochondrial respiration and proliferation of vascular smooth muscle cells. Front Cardiovasc Med. 9:9057172022. View Article : Google Scholar : PubMed/NCBI | |
Hou R, Liu L, Anees S, Hiroyasu S and Sibinga NE: The Fat1 cadherin integrates vascular smooth muscle cell growth and migration signals. J Cell Biol. 173:417–429. 2006. View Article : Google Scholar : PubMed/NCBI | |
Riascos-Bernal DF, Ressa G, Korrapati A and Sibinga NES: The FAT1 cadherin drives vascular smooth muscle cell migration. Cells. 12:16212023. View Article : Google Scholar : PubMed/NCBI | |
Tanoue T and Takeichi M: Mammalian Fat1 cadherin regulates actin dynamics and cell-cell contact. J Cell Biol. 165:517–528. 2004. View Article : Google Scholar : PubMed/NCBI | |
Saburi S, Hester I, Goodrich L and McNeil H: Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity. Development. 139:1806–1820. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ahmed AF, de Bock CE, Sontag E, Hondermarck H, Lincz LF and Thorne R: FAT1 cadherin controls neuritogenesis during NTera2 cell differentiation. Biochem Biophys Res Commun. 514:625–631. 2019. View Article : Google Scholar : PubMed/NCBI | |
Braun GS, Kuszka A, Dau C, Kriz W and Moeller MJ: Interaction of atypical cadherin Fat1 with SoHo adaptor proteins CAP/ponsin and ArgBP2. Biochem Biophys Res Commun. 472:88–94. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peng Z, Gong Y and Liang X: Role of FAT1 in health and disease. Oncol Lett. 21:3982021. View Article : Google Scholar : PubMed/NCBI | |
Li M, Zhong Y and Wang M: Fat1 suppresses the tumor-initiating ability of nonsmall cell lung cancer cells by promoting Yes-associated protein 1 nuclear-cytoplasmic translocation. Environ Toxicol. 36:2333–2341. 2021. View Article : Google Scholar : PubMed/NCBI | |
Katoh M: Function and cancer genomics of FAT family genes (review). Int J Oncol. 41:1913–1918. 2012. View Article : Google Scholar : PubMed/NCBI | |
Morris LG, Ramaswami D and Chan TA: The FAT epidemic: A gene family frequently mutated across multiple human cancer types. Cell Cycle. 12:1011–1012. 2013. View Article : Google Scholar : PubMed/NCBI | |
Morris LG, Kaufman AM, Gong Y, Ramaswami D, Walsh LA, Turcan Ş, Eng S, Kannan K, Zou Y, Peng L, et al: Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet. 45:253–261. 2013. View Article : Google Scholar : PubMed/NCBI | |
He Z, Li R and Jiang H: Mutations and copy number abnormalities of hippo pathway components in human cancers. Front Cell Dev Biol. 9:6617182021. View Article : Google Scholar : PubMed/NCBI | |
Faraji F, Ramirez SI, Quiroz PY, Mendez-Molina AN and Gutkind JS: Genomic hippo pathway alterations and persistent YAP/TAZ activation: New hallmarks in head and neck cancer. Cells. 11:13702022. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Sun X, Wang Y, Ling K, Chen C, Cai X, Liang X and Liang Z: FAT1 inhibits the proliferation and metastasis of cervical cancer cells by binding β-catenin. Int J Clin Exp Pathol. 12:3807–3818. 2019.PubMed/NCBI | |
Ma W, Niu Z, Han D, Wang B and Wang X: Circ-FAT1 up-regulates FOSL2 expression by sponging miR-619-5p to facilitate colorectal cancer progression. Biochem Genet. 60:1362–1379. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jia L, Wang Y and Wang CY: circFAT1 promotes cancer stemness and immune evasion by promoting STAT3 activation. Adv Sci (Weinh). 8:20033762021. View Article : Google Scholar : PubMed/NCBI | |
Wang TL, Miao XJ, Shuai YR, Sun HP, Wang X, Yang M and Zhang N: FAT1 inhibits the proliferation of DLBCL cells via increasing the m(6)A modification of YAP1 mRNA. Sci Rep. 14:118362024. View Article : Google Scholar : PubMed/NCBI | |
Pastushenko I, Mauri F, Song Y, de Cock F, Meeusen B, Swedlund B, Impens F, Van Haver D, Opitz M, Thery M, et al: Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature. 589:448–455. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Liu J, Liang X, Chen J, Hong J, Li L, He Q and Cai X: History and progression of Fat cadherins in health and disease. Onco Targets Ther. 9:7337–7343. 2016. View Article : Google Scholar : PubMed/NCBI | |
Katoh Y and Katoh M: Comparative integromics on FAT1, FAT2, FAT3 and FAT4. Int J Mol Med. 18:523–528. 2006.PubMed/NCBI | |
Chen ZG, Saba NF and Teng Y: The diverse functions of FAT1 in cancer progression: Good, bad, or ugly? J Exp Clin Cancer Res. 41:2482022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Lin K and Xiao H: A pan-cancer analysis of the FAT1 in human tumors. Sci Rep. 12:215982022. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Yang L, Gao Y, Zhou Y, Shi Y, Liu K, Yu R, Shao Y, Zhang W, Wu G and He J: Clinical value of FAT1 mutations to indicate the immune response in colorectal cancer patients. Genomics. 116:1108082024. View Article : Google Scholar : PubMed/NCBI | |
Ding C, Huang H, Wu D, Chen C, Hua Y, Liu J, Li Y, Liu H and Chen J: Pan-cancer analysis predict that FAT1 is a therapeutic target and immunotherapy biomarker for multiple cancer types including non-small cell lung cancer. Front Immunol. 15:13690732024. View Article : Google Scholar : PubMed/NCBI | |
Valletta D, Czech B, Spruss T, Ikenberg K, Wild P, Hartmann A, Weiss TS, Oefner PJ, Müller M, Bosserhoff AK and Hellerbrand C: Regulation and function of the atypical cadherin FAT1 in hepatocellular carcinoma. Carcinogenesis. 35:1407–1415. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pennathur A, Gibson MK, Jobe BA and Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, et al: Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 509:91–95. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gao YB, Chen ZL, Li JG, Hu XD, Shi XJ, Sun ZM, Zhang F, Zhao ZR, Li ZT, Liu ZY, et al: Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 46:1097–1102. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Chen H, Xi R, Cui H, Zhao Y, Xu E, Yan T, Lu X, Huang F, Kong P, et al: Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res. 30:902–913. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Shi J, Shi X, Chen W and Liu J: Mutational characterization and potential prognostic biomarkers of Chinese patients with esophageal squamous cell carcinoma. Onco Targets Ther. 13:12797–12809. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhou Y, Cheng C, Cui H, Cheng L, Kong P, Wang J, Li Y, Chen W, Song B, et al: Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma. Am J Hum Genet. 107:3752020. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Zhai Y, Shi R, Qian Y, Cui H, Yang J, Bi Y, Yan T, Yang J, Ma Y, et al: FAT1 inhibits cell migration and invasion by affecting cellular mechanical properties in esophageal squamous cell carcinoma. Oncol Rep. 39:2136–2146. 2018.PubMed/NCBI | |
Mishra R, Nikoo MZ, Veeraballi S and Singh A: Venetoclax and hypomethylating agent combination in myeloid malignancies: Mechanisms of synergy and challenges of resistance. Int J Mol Sci. 25:4842023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang G, Ma Y, Teng J, Wang Y, Cui Y, Dong Y, Shao S, Zhan Q and Liu X: FAT1, a direct transcriptional target of E2F1, suppresses cell proliferation, migration and invasion in esophageal squamous cell carcinoma. Chin J Cancer Res. 31:609–619. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Zhai Y, Kong P, Cui H, Yan T, Yang J, Qian Y, Ma Y, Wang F, Li H, et al: FAT1 prevents epithelial mesenchymal transition (EMT) via MAPK/ERK signaling pathway in esophageal squamous cell cancer. Cancer Lett. 397:83–93. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T and Sethi G: Association of the epithelial-mesenchymal transition (EMT) with cisplatin resistance. Int J Mol Sci. 21:40022020. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Zhai Y, Kong P, Cui H, Yan T, Yang J, Qian Y, Ma Y, Wang F, Li H, et al: Corrigendum to ‘FAT1 prevents epithelial mesenchymal transition (EMT) via MAPK/ERK signaling pathway in esophageal squamous cell cancer’ [(Canc. Lett. 397 (2017) 83–93)]. Cancer Lett. 494:1–2. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhai Y, Shan C, Zhang H, Kong P, Zhang L, Wang Y, Hu X and Cheng X: FAT1 downregulation enhances stemness and cisplatin resistance in esophageal squamous cell carcinoma. Mol Cell Biochem. 477:2689–2702. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mai Z, Yuan J, Yang H, Fang S, Xie X, Wang X, Xie J, Wen J and Fu J: Inactivation of Hippo pathway characterizes a poor-prognosis subtype of esophageal cancer. JCI Insight. 7:e1552182022. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Wang Z, Zhou L, Ma Z, Zhang J, Wu Y, Shao Y and Yang Y: FAT1 and PTPN14 regulate the malignant progression and chemotherapy resistance of esophageal cancer through the hippo signaling pathway. Anal Cell Pathol (Amst). 2021:92903722021.PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cramer JD, Burtness B, Le QT and Ferris R: The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol. 16:669–683. 2019. View Article : Google Scholar : PubMed/NCBI | |
Leemans CR, Snijders PJF and Brakenhoff RH: The molecular landscape of head and neck cancer. Nat Rev Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network, . Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 517:576–582. 2015. View Article : Google Scholar : PubMed/NCBI | |
Campbell JD, Yau C, Bowlby R, Liu Y, Brennan K, Fan H, Taylor AM, Wang C, Walter V, Akbani R, et al: Genomic, pathway network, and immunologic features distinguishing squamous carcinomas. Cell Rep. 23:194–212.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alamoud KA and Kukuruzinska MA: Emerging insights into Wnt/β-catenin signaling in head and neck cancer. J Dent Res. 97:665–673. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zwirner K, Hilke FJ, Demidov G, Fernandez JS, Ossowski S, Gani C, Thorwarth D, Riess O, Zips D, Schroeder C and Welz S: Radiogenomics in head and neck cancer: Correlation of radiomic heterogeneity and somatic mutations in TP53, FAT1 and KMT2D. Strahlenther Onkol. 195:771–779. 2019. View Article : Google Scholar : PubMed/NCBI | |
Moreira A, Poulet A, Masliah-Planchon J, Lecerf C, Vacher S, Chérif LL, Dupain C, Marret G, Girard E, Syx L, et al: Prognostic value of tumor mutational burden in patients with oral cavity squamous cell carcinoma treated with upfront surgery. ESMO Open. 6:1001782021. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Lee C, Kim H and Yoon SO: Genetic characteristics of advanced oral tongue squamous cell carcinoma in young patients. Oral Oncol. 144:1064662023. View Article : Google Scholar : PubMed/NCBI | |
Su SC, Lin CW, Liu YF, Fan WL, Chen MK, Yu CP, Yang WE, Su CW, Chuang CY, Li WH, et al: Exome sequencing of oral squamous cell carcinoma reveals molecular subgroups and novel therapeutic opportunities. Theranostics. 7:1088–1099. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chai AWY, Lim KP and Cheong SC: Translational genomics and recent advances in oral squamous cell carcinoma. Semin Cancer Biol. 61:71–83. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kim KT, Kim BS and Kim JH: Association between FAT1 mutation and overall survival in patients with human papillomavirus-negative head and neck squamous cell carcinoma. Head Neck. 38 (Suppl 1):E2021–E2029. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xi Y, Negrao MV, Akagi K, Xiao W, Jiang B, Warner SC, Dunn JD, Wang J, Symer DE and Gillison ML: Noninvasive genomic profiling of somatic mutations in oral cavity cancers. Oral Oncol. 140:1063722023. View Article : Google Scholar : PubMed/NCBI | |
Inchanalkar M, Srivatsa S, Ambatipudi S, Bhosale PG, Patil A, Schäffer AA, Beerenwinkel N and Mahimkar MB: Genome-wide DNA methylation profiling of HPV-negative leukoplakia and gingivobuccal complex cancers. Clin Epigenetics. 15:932023. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary S, Dam V, Ganguly K, Sharma S, Atri P, Chirravuri-Venkata R, Cox JL, Sayed Z, Jones DT, Ganti AK, et al: Differential mutation spectrum and immune landscape in African Americans versus Whites: A possible determinant to health disparity in head and neck cancer. Cancer Lett. 492:44–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
Santos-de-Frutos K, Segrelles C and Lorz C: Hippo pathway and yap signaling alterations in squamous cancer of the head and neck. J Clin Med. 8:21312019. View Article : Google Scholar : PubMed/NCBI | |
Martin D, Degese MS, Vitale-Cross L, Iglesias-Bartolome R, Valera JLC, Wang Z, Feng X, Yeerna H, Vadmal V, Moroishi T, et al: Assembly and activation of the Hippo signalome by FAT1 tumor suppressor. Nat Commun. 9:23722018. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Golczer G, Ghose S, Lin B, Langenbucher A, Webb J, Bhanot H, Abt NB, Lin D, Varvares M, et al: YAP1 maintains active chromatin state in head and neck squamous cell carcinomas that promotes tumorigenesis through cooperation with BRD4. Cell Rep. 39:1109702022. View Article : Google Scholar : PubMed/NCBI | |
Alonso-Juarranz M, Sen O, Pérez P, González-Corchón MA, Cabezas-Camarero S, Saiz-Pardo M, Viñas-Lopez J, Recio-Poveda L, Botella LM and Falahat F: The distinctive features behind the aggressiveness of oral and cutaneous squamous cell carcinomas. Cancers (Basel). 15:32272023. View Article : Google Scholar : PubMed/NCBI | |
Lin SC, Lin LH, Yu SY, Kao SY, Chang KW, Cheng HW and Liu CJ: FAT1 somatic mutations in head and neck carcinoma are associated with tumor progression and survival. Carcinogenesis. 39:1320–1330. 2018.PubMed/NCBI | |
Wu MH, Lu RY, Yu SJ, Tsai YZ, Lin YC, Bai ZY, Liao RY, Hsu YC, Chen CC and Cai BH: PTC124 rescues nonsense mutation of two tumor suppressor genes NOTCH1 and FAT1 to repress HNSCC cell proliferation. Biomedicines. 10:29482022. View Article : Google Scholar : PubMed/NCBI | |
Lan T, Ge Q, Zheng K, Huang L, Yan Y, Zheng L, Lu Y and Zheng D: FAT1 Upregulates in oral squamous cell carcinoma and promotes cell proliferation via cell cycle and DNA repair. Front Oncol. 12:8700552022. View Article : Google Scholar : PubMed/NCBI | |
Kim SI, Woo SR, Noh JK, Lee MK, Lee YC, Lee JW, Ko SG and Eun YG: Clinical significance of FAT1 gene mutation and mRNA expression in patients with head and neck squamous cell carcinoma. Mol Oncol. 16:1661–1679. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hsu TN, Huang CM, Huang CS, Huang MS, Yeh CT, Chao TY and Bamodu OA: Targeting FAT1 inhibits carcinogenesis, induces oxidative stress and enhances cisplatin sensitivity through deregulation of LRP5/WNT2/GSS signaling axis in oral squamous cell carcinoma. Cancers (Basel). 11:18832019. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Zhang C, Chen J, Wang D, Tu J, Van Waes C, Saba NF, Chen ZG and Chen Z: The proteomic landscape of growth factor signaling networks associated with FAT1 mutations in head and neck cancers. Cancer Res. 81:4402–4416. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Cui WQ, Liu C, Feng F, Liu R, Zhang J and Sun CG: Prognostic biomarkers correlated with immune infiltration in non-small cell lung cancer. FEBS Open Bio. 13:72–88. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Zhang J, Guo C, Wang M, Wang C, Yan Y, Sun L, Wang D, Zhang L, Yu H, et al: Proteogenomic characterization of small cell lung cancer identifies biological insights and subtype-specific therapeutic strategies. Cell. 187:184–203.e28. 2024. View Article : Google Scholar : PubMed/NCBI | |
Peng J, Xiao L, Zou D and Han L: A somatic mutation signature predicts the best overall response to anti-programmed cell death protein-1 treatment in epidermal growth factor receptor/anaplastic lymphoma kinase-negative non-squamous non-small cell lung cancer. Front Med (Lausanne). 9:8083782022. View Article : Google Scholar : PubMed/NCBI | |
Hao F, Ma Q and Zhong D: Potential predictive value of comutant LRP1B and FAT for immune response in non-small cell lung cancer: LRP1B and FAT comutation enhance immune response. Transl Oncol. 24:1014932022. View Article : Google Scholar : PubMed/NCBI | |
Fang W, Ma Y, Yin JC, Hong S, Zhou H, Wang A, Wang F, Bao H, Wu X, Yang Y, et al: comprehensive genomic profiling identifies novel genetic predictors of response to anti-PD-(L)1 therapies in non-small cell lung cancer. Clin Cancer Res. 25:5015–5026. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Tang Y, Guo Y, Kong Y, Shi F, Sheng C, Wang S and Wang Q: Favorable immune checkpoint inhibitor outcome of patients with melanoma and NSCLC harboring FAT1 mutations. NPJ Precis Oncol. 6:462022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang Y, Wang L, Wang M, Li S, He J, Ji J, Li K and Cao L: Identifying survival of pan-cancer patients under immunotherapy using genomic mutation signature with large sample cohorts. J Mol Med (Berl). 102:69–79. 2024. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Yang Z, Hu Z, Yang Z, Pan Y, Chen J, Wang J, Hu D, Zhou Z, Xu L, et al: Preoperative serum ctDNA predicts early hepatocellular carcinoma recurrence and response to systemic therapies. Hepatol Int. 16:868–878. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu HY, Cao GY, Wang SP, Chen Y, Liu GD, Gao YJ and Hu JP: POU2F1 promotes growth and metastasis of hepatocellular carcinoma through the FAT1 signaling pathway. Am J Cancer Res. 7:1665–1679. 2017.PubMed/NCBI | |
Xu J, Wang B, Liu ZT, Lai MC, Zhang ML and Zheng SS: miR-223-3p regulating the occurrence and development of liver cancer cells by targeting FAT1 gene. Math Biosci Eng. 17:1534–1547. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang ZL, Zhang PB, Zhang JT, Li F, Li TT and Huang XY: Comprehensive genomic profiling identifies FAT1 as a negative regulator of EMT, CTCs, and metastasis of hepatocellular carcinoma. J Hepatocell Carcinoma. 10:369–382. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li X, Jiang J, Zhao X, Wang J, Han H, Zhao Y, Peng B, Zhong R, Ying W and Qian X: N-glycoproteome analysis of the secretome of human metastatic hepatocellular carcinoma cell lines combining hydrazide chemistry, HILIC enrichment and mass spectrometry. PLoS One. 8:e819212013. View Article : Google Scholar : PubMed/NCBI | |
Meng P, Zhang YF, Zhang W, Chen X, Xu T, Hu S, Liang X, Feng M, Yang X and Ho M: Identification of the atypical cadherin FAT1 as a novel glypican-3 interacting protein in liver cancer cells. Sci Rep. 11:402021. View Article : Google Scholar : PubMed/NCBI | |
Malik N, Kundu A, Gupta Y, Irshad K, Arora M, Goswami S, Mahajan S, Sarkar C, Suri V, Suri A, et al: Protumorigenic role of the atypical cadherin FAT1 by the suppression of PDCD10 via RelA/miR221-3p/222-3p axis in glioblastoma. Mol Carcinog. 62:1817–1831. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li LC, Zhang M, Feng YK and Wang XJ: IDH1-R132H suppresses glioblastoma malignancy through FAT1-ROS-HIF-1α signaling. Neurol India. 68:1050–1058. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Gao H, Su Z, Yue F and Tian X: Effect of FAT1 gene expression on the prognosis of medulloblastoma in children: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 99:e230202020. View Article : Google Scholar : PubMed/NCBI | |
Madan E, Dikshit B, Gowda SH, Srivastava C, Sarkar C, Chattopadhyay P, Sinha S and Chosdol K: FAT1 is a novel upstream regulator of HIF1α and invasion of high grade glioma. Int J Cancer. 139:2570–2582. 2016. View Article : Google Scholar : PubMed/NCBI | |
Srivastava C, Irshad K, Dikshit B, Chattopadhyay P, Sarkar C, Gupta DK, Sinha S and Chosdol K: FAT1 modulates EMT and stemness genes expression in hypoxic glioblastoma. Int J Cancer. 142:805–812. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dikshit B, Irshad K, Madan E, Aggarwal N, Sarkar C, Chandra PS, Gupta DK, Chattopadhyay P, Sinha S and Chosdol K: FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells. Oncogene. 32:3798–3808. 2013. View Article : Google Scholar : PubMed/NCBI | |
Irshad K, Srivastava C, Malik N, Arora M, Gupta Y, Goswami S, Sarkar C, Suri V, Mahajan S, Gupta DK, et al: Upregulation of atypical cadherin FAT1 promotes an immunosuppressive tumor microenvironment via TGF-β. Front Immunol. 13:8138882022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Lyu S, Wang S, Shen H, Niu F, Liu X, Liu J and Niu Y: Loss of FAT1 during the progression from DCIS to IDC and predict poor clinical outcome in breast cancer. Exp Mol Pathol. 100:177–183. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhao F, Miyashita M, Hattori M, Yoshimatsu T, Howard F, Kaneva K, Jones R, Bell JSK, Fleming GF, Jaskowiak N, et al: Racial disparities in pathological complete response among patients receiving neoadjuvant chemotherapy for early-stage breast cancer. JAMA Netw Open. 6:e2333292023. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, Hsieh W, Sanchez-Vega F, Brown DN, Da Cruz Paula AF, et al: Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell. 34:893–905. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xi J and Ma CX: Sequencing endocrine therapy for metastatic breast cancer: What do we do after disease progression on a CDK4/6 inhibitor? Curr Oncol Rep. 22:572020. View Article : Google Scholar : PubMed/NCBI | |
Bu J, Zhang Y, Wu S, Li H, Sun L, Liu Y, Zhu X, Qiao X, Ma Q, Liu C, et al: KK-LC-1 as a therapeutic target to eliminate ALDH(+) stem cells in triple negative breast cancer. Nat Commun. 14:26022023. View Article : Google Scholar : PubMed/NCBI | |
Wong K, Abascal F, Ludwig L, Aupperle-Lellbach H, Grassinger J, Wright CW, Allison SJ, Pinder E, Phillips RM, Romero LP, et al: Cross-species oncogenomics offers insight into human muscle-invasive bladder cancer. Genome Biol. 24:1912023. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Liu P, An H and Zhang Y: Sulforaphane suppresses the viability and metastasis, and promotes the apoptosis of bladder cancer cells by inhibiting the expression of FAT-1. Int J Mol Med. 46:1085–1095. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cazier JB, Rao SR, McLean CM, Walker AK, Wright BJ, Jaeger EE, Kartsonaki C, Marsden L, Yau C, Camps C, et al: Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden. Nat Commun. 5:37562014. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Zhu Y, Chen Z, Huang Z, Liu B, Xu Y, Li Z, Lin Z and Li M: S100A14 inhibits cell growth and epithelial-mesenchymal transition (EMT) in prostate cancer through FAT1-mediated Hippo signaling pathway. Hum Cell. 34:1215–1226. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kang MH, Jeong GS, Smoot DT, Ashktorab H, Hwang CM, Kim BS, Kim HS and Park YY: Verteporfin inhibits gastric cancer cell growth by suppressing adhesion molecule FAT1. Oncotarget. 8:98887–98897. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Ji K, Min C, Zhang C, Yang L, Zhang Q, Tian Z, Zhang M, Wang X and Li X: Oncogenic LINC00857 recruits TFAP2C to elevate FAT1 expression in gastric cancer. Cancer Sci. 114:63–74. 2023. View Article : Google Scholar : PubMed/NCBI | |
Holowatyj AN, Wen W, Gibbs T, Seagle HM, Keller SR, Edwards DRV, Washington MK, Eng C, Perea J, Zheng W and Guo X: Racial/Ethnic and sex differences in somatic cancer gene mutations among patients with early-onset colorectal cancer. Cancer Discov. 13:570–579. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li P, Meng Q, Xue Y, Teng Z, Chen H, Zhang J, Xu Y, Wang S, Yu R, Ou Q, et al: Comprehensive genomic profiling of colorectal cancer patients reveals differences in mutational landscapes among clinical and pathological subgroups. Front Oncol. 12:10001462022. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Peng W, Tian C, Zhang Y, Ji D, Wang L, Jin K, Wang F, Shao Y, Wang X and Sun Y: Molecular characteristics of early-onset compared with late-onset colorectal cancer: A case controlled study. Int J Surg. 110:4559–4570. 2024.PubMed/NCBI | |
Jiang NN, Yue GGL, Li P, Ye YS, Gomes AJ, Kwok FHF, Lee JKM, Gao S, Lau CB and Xu G: Discovery of dearomatized isoprenylated acylphloroglucinols with colon tumor suppressive activities in mice via inhibiting NFκB-FAT1-PDCD4 signaling activation. Eur J Med Chem. 239:1145322022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhao S, Su J, Liu S, Wu Z, Ma W, Tang M, Wu J, Mao E, Han L, et al: Comprehensive genomic profiling reveals prognostic signatures and insights into the molecular landscape of colorectal cancer. Front Oncol. 13:12855082023. View Article : Google Scholar : PubMed/NCBI | |
Grifantini R, Taranta M, Gherardini L, Naldi I, Parri M, Grandi A, Giannetti A, Tombelli S, Lucarini G, Ricotti L, et al: Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer. J Control Release. 280:76–86. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ardjmand A, de Bock CE, Shahrokhi S, Lincz LF, Boyd AW, Burns GF and Thorne RF: Fat1 cadherin provides a novel minimal residual disease marker in acute lymphoblastic leukemia. Hematology. 18:315–322. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Xiao M, Zhou X, Hao Y, Xin C, Tang Y, Liang Y, Zhang Y and Li S: Aplastic anemia preceding acute lymphoblastic leukemia in an adult with FAT1 mutation. Minerva Med. 110:593–594. 2019.PubMed/NCBI | |
Feng J, Li Y, Jia Y, Fang Q, Gong X, Dong X, Ru K, Li Q, Zhao X, Liu K, et al: Spectrum of somatic mutations detected by targeted next-generation sequencing and their prognostic significance in adult patients with acute lymphoblastic leukemia. J Hematol Oncol. 10:612017. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Liu X, Li Y, Shi X, Li Y, Tan R, Jiang Y, Sui X, Ge X, Xu H, et al: Characteristics of molecular genetic mutations and their correlation with prognosis in adolescent and adult patients with acute lymphoblastic leukemia. Oncology. 102:85–98. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chang YH, Yu CH, Jou ST, Lin CY, Lin KH, Lu MY, Wu KH, Chang HH, Lin DT, Lin SW, et al: Targeted sequencing to identify genetic alterations and prognostic markers in pediatric T-cell acute lymphoblastic leukemia. Sci Rep. 11:7692021. View Article : Google Scholar : PubMed/NCBI | |
de Bock CE, Ardjmand A, Molloy TJ, Bone SM, Johnstone D, Campbell DM, Shipman KL, Yeadon TM, Holst J, Spanevello MD, et al: The Fat1 cadherin is overexpressed and an independent prognostic factor for survival in paired diagnosis-relapse samples of precursor B-cell acute lymphoblastic leukemia. Leukemia. 26:918–926. 2012. View Article : Google Scholar : PubMed/NCBI | |
Neumann M, Seehawer M, Schlee C, Vosberg S, Heesch S, von der Heide EK, Graf A, Krebs S, Blum H, Gökbuget N, et al: FAT1 expression and mutations in adult acute lymphoblastic leukemia. Blood Cancer J. 4:e2242014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, et al: The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 49:1211–1218. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liebig S, Neumann M, Silva P, Ortiz-Tanchez J, Schulze V, Isaakidis K, Schlee C, Schroeder MP, Beder T, Morris LGT, et al: FAT1 expression in T-cell acute lymphoblastic leukemia (T-ALL) modulates proliferation and WNT signaling. Sci Rep. 13:9722023. View Article : Google Scholar : PubMed/NCBI | |
de Bock CE, Down M, Baidya K, Sweron B, Boyd AW, Fiers M, Burns GF, Molloy TJ, Lock RB, Soulier J, et al: T-cell acute lymphoblastic leukemias express a unique truncated FAT1 isoform that cooperates with NOTCH1 in leukemia development. Haematologica. 104:e204–e207. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garg M, Nagata Y, Kanojia D, Mayakonda A, Yoshida K, Keloth SH, Zang ZJ, Okuno Y, Shiraishi Y, Chiba K, et al: Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood. 126:2491–2501. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sethi S, Madden B, Moura MC, Nasr SH, Klomjit N, Gross L, Negron V, Charlesworth MC, Alexander MP, Leung N, et al: Hematopoietic stem cell transplant-membranous nephropathy is associated with protocadherin FAT1. J Am Soc Nephrol. 33:1033–1044. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ahn JS, Kim HJ, Kim YK, Lee SS, Jung SH, Yang DH, Lee JJ, Kim NY, Choi SH, Jung CW, et al: DNMT3A R882 mutation with FLT3-ITD positivity is an extremely poor prognostic factor in patients with normal-karyotype acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 22:61–70. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Zhang Y, Zhao K, Zhou L, Zhou Y, Xuan L, Cao R, Xu J, Dai M and Liu Q: Somatic mutations predict prognosis in myelodysplastic syndrome patients with normal karyotypes. Signal Transduct Target Ther. 6:2742021. View Article : Google Scholar : PubMed/NCBI | |
Zhong WJ, Liu XD, Zhong LY, Li KB, Sun QX, Xu X, Wei T, Li QS and Zhu ZG: Comparison of gene mutation spectra in younger and older Chinese acute myeloid leukemia patients and its prognostic value. Gene. 770:1453442021. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Li Y, Zhang J, Yan L, Zhao H, Ding L, Bhatara S, Yang X, Yoshimura S, Yang W, et al: Single-cell systems pharmacology identifies development-driven drug response and combination therapy in B cell acute lymphoblastic leukemia. Cancer Cell. 42:552–567. 2024. View Article : Google Scholar : PubMed/NCBI | |
Laginestra MA, Cascione L, Motta G, Fuligni F, Agostinelli C, Rossi M, Sapienza MR, Righi S, Broccoli A, Indio V, et al: Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified. Mod Pathol. 33:179–187. 2020. View Article : Google Scholar : PubMed/NCBI | |
Laginestra MA, Cascione L, Motta G, Fuligni F, Agostinelli C, Rossi M, Sapienza MR, Righi S, Broccoli A, Indio V, et al: Correction: Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified. Mod Pathol. 33:3192020. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Mou B, Xu J, Wang J, Liu Q, Yang Y, Tang W, Zhong X and Xu C: Angioimmunoblastic T-cell lymphoma: Novel recurrent mutations and prognostic biomarkers by cell-free DNA profiling. Br J Haematol. 203:807–819. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hansen SV, Hansen MH, Cédile O, Møller MB, Haaber J, Abildgaard N and Nyvold CG: Detailed characterization of the transcriptome of single B cells in mantle cell lymphoma suggesting a potential use for SOX4. Sci Rep. 11:190922021. View Article : Google Scholar : PubMed/NCBI | |
Zhao A, Wu F, Wang Y, Li J, Xu W and Liu H: Analysis of genetic alterations in ocular adnexal mucosa-associated lymphoid tissue lymphoma with whole-exome sequencing. Front Oncol. 12:8176352022. View Article : Google Scholar : PubMed/NCBI | |
Yang P, Liu SZ, Li CY, Zhang WL, Wang J, Chen YT, Li S, Liu CL, Liu H, Cai QQ, et al: Genetic and prognostic analysis of blastoid and pleomorphic mantle cell lymphoma: A multicenter analysis in China. Ann Hematol. 103:2381–2391. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kortüm KM, Langer C, Monge J, Bruins L, Zhu YX, Shi CX, Jedlowski P, Egan JB, Ojha J, Bullinger L, et al: Longitudinal analysis of 25 sequential sample-pairs using a custom multiple myeloma mutation sequencing panel (M(3)P). Ann Hematol. 94:1205–1211. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sethi S, Madden B, Moura MC, Nasr SH, Alexander MP, Debiec H, Torrel N, Gross L, Negron V, Specks U, et al: FAT1 is a target antigen in a subset of de novo allograft membranous nephropathy associated with antibody mediated rejection. Kidney Int. 106:985–990. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Li MK, Hu XY, Wu YX, Wang YY, Zhao PP, Cheng LN, Yu RH, Zhang XD, Chen S, et al: The tumor suppressor Fat1 is dispensable for normal murine hematopoiesis. J Leukoc Biol. 116:909–914. 2024. View Article : Google Scholar : PubMed/NCBI |