1
|
Ziegler SF: The role of thymic stromal
lymphopoietin (TSLP) in allergic disorders. Curr Opin Immunol.
22:795–799. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yu X, Li H and Ren X: Signaling cascades
initiated by TSLP-mediated signals in different cell types. Cell
Immunol. 279:174–179. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Corren J and Ziegler SF: TSLP: From
allergy to cancer. Nat Immunol. 20:1603–1609. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Verstraete K, Peelman F, Braun H, Lopez J,
Van Rompaey D, Dansercoer A, Vandenberghe I, Pauwels K, Tavernier
J, Lambrecht BN, et al: Structure and antagonism of the receptor
complex mediated by human TSLP in allergy and asthma. Nat Commun.
8:149372017. View Article : Google Scholar : PubMed/NCBI
|
5
|
Marković I and Savvides SN: Modulation of
signaling mediated by TSLP and IL-7 in inflammation, autoimmune
diseases, and cancer. Front Immunol. 11:15572020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Varricchi G, Pecoraro A and Marone G,
Criscuolo G, Spadaro G, Genovese A and Marone G: Thymic stromal
lymphopoietin isoforms, inflammatory disorders, and cancer. Front
Immunol. 9:15952018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Borriello F, Iannone R, Di Somma S,
Vastolo V, Petrosino G, Visconte F, Raia M, Scalia G, Loffredo S,
Varricchi G, et al: Lipopolysaccharide-Elicited TSLPR expression
enriches a functionally discrete subset of human CD14+ CD1c+
monocytes. J Immunol. 198:3426–3435. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Braile M, Fiorelli A, Sorriento D, Di
Crescenzo RM, Galdiero MR, Marone G, Santini M, Varricchi G and
Loffredo S: Human lung-resident macrophages express and are targets
of thymic stromal lymphopoietin in the tumor microenvironment.
Cells. 10:20122021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Marcella S, Petraroli A, Canè L, Ferrara
AL, Poto R, Parente R, Palestra F, Cristinziano L, Modestino L,
Galdiero MR, et al: Thymic stromal lymphopoietin (TSLP) is a
substrate for tryptase in patients with mastocytosis. Eur J Intern
Med. 117:111–118. 2023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hirano R, Hasegawa S, Hashimoto K, Haneda
Y, Ohsaki A and Ichiyama T: Human thymic stromal lymphopoietin
enhances expression of CD80 in human CD14+ monocytes/macrophages.
Inflamm Res. 60:605–610. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lin YC, Lin YC, Tsai ML, Liao WT and Hung
CH: TSLP regulates mitochondrial ROS-induced mitophagy via histone
modification in human monocytes. Cell Biosci. 12:322022. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ebina-Shibuya R and Leonard WJ: Role of
thymic stromal lymphopoietin in allergy and beyond. Nat Rev
Immunol. 23:24–37. 2023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Boieri M, Marchese E, Pham QM, Azin M,
Steidl LE, Malishkevich A and Demehri S: Thymic stromal
lymphopoietin-stimulated CD4+ T cells induce senescence in advanced
breast cancer. Front Cell Dev Biol. 10:10026922022. View Article : Google Scholar : PubMed/NCBI
|
14
|
Smolarz B, Nowak AZ and Romanowicz H:
Breast Cancer-epidemiology, classification, pathogenesis and
treatment (review of literature). Cancers (Basel). 14:25692022.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Momenimovahed Z and Salehiniya H:
Epidemiological characteristics of and risk factors for breast
cancer in the world. Breast Cancer (Dove Med Press). 11:151–164.
2019.PubMed/NCBI
|
16
|
Mehrgou A and Akouchekian M: The
importance of BRCA1 and BRCA2 genes mutations in breast cancer
development. Med J Islam Repub Iran. 30:3692016.PubMed/NCBI
|
17
|
Pedroza-Gonzalez A, Xu K, Wu TC, Aspord C,
Tindle S, Marches F, Gallegos M, Burton EC, Savino D, Hori T, et
al: Thymic stromal lymphopoietin fosters human breast tumor growth
by promoting type 2 inflammation. J Exp Med. 208:479–490. 2011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu TC, Xu K, Martinek J, Young RR,
Banchereau R, George J, Turner J, Kim KI, Zurawski S, Wang X, et
al: IL1 receptor antagonist controls transcriptional signature of
inflammation in patients with metastatic breast cancer. Cancer Res.
78:5243–5258. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Olkhanud PB, Rochman Y, Bodogai M,
Malchinkhuu E, Wejksza K, Xu M, Gress RE, Hesdorffer C, Leonard WJ
and Biragyn A: Thymic stromal lymphopoietin is a key mediator of
breast cancer progression. J Immunol. 186:5656–5662. 2011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Olkhanud PB, Baatar D, Bodogai M, Hakim F,
Gress R, Anderson RL, Deng J, Xu M, Briest S and Biragyn A: Breast
cancer lung metastasis requires expression of chemokine receptor
CCR4 and regulatory T cells. Cancer Res. 69:5996–6004. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Demehri S, Cunningham TJ, Manivasagam S,
Ngo KH, Moradi Tuchayi S, Reddy R, Meyers MA, DeNardo DG and
Yokoyama WM: Thymic stromal lymphopoietin blocks early stages of
breast carcinogenesis. J Clin Invest. 126:1458–1470. 2016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Ghirelli C, Sadacca B, Reyal F, Zollinger
R, Michea P, Sirven P, Pattarini L, Martínez-Cingolani C,
Guillot-Delost M, Nicolas A, et al: No evidence for TSLP pathway
activity in human breast cancer. Oncoimmunology. 5:e11784382016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Tang Z, Li C, Kang B, Gao G, Li Cc and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102.
2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chandrashekar DS, Bashel B, Balasubramanya
SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and
Varambally S: UALCAN: A portal for facilitating tumor subgroup gene
expression and survival analyses. Neoplasia. 19:649–658. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Chandrashekar DS, Karthikeyan SK, Korla
PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne
U, et al: UALCAN: An update to the integrated cancer data analysis
platform. Neoplasia. 25:18–27. 2022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu
JS, Li B and Liu XS: TIMER: A web server for comprehensive analysis
of tumor-infiltrating immune cells. Cancer Res. 77:e108–e110. 2017.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Smaldone G, Coppola L, Incoronato M,
Parasole R, Ripaldi M, Vitagliano L, Mirabelli P and Salvatore M:
KCTD15 protein expression in peripheral blood and acute myeloid
leukemia. Diagnostics (Basel). 10:3712020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Sasserath T, Rumsey JW, McAleer CW,
Bridges LR, Long CJ, Elbrecht D, Schuler F, Roth A,
Bertinetti-LaPatki C, Shuler ML and Hickman JJ: Differential
monocyte actuation in a Three-organ functional innate immune
System-on-a-Chip. Adv Sci (Weinh). 7:20003232020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yue W, Lin Y, Yang X, Li B, Liu J and He
R: Thymic stromal lymphopoietin (TSLP) inhibits human colon tumor
growth by promoting apoptosis of tumor cells. Oncotarget.
7:16840–16854. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dieci MV, Miglietta F and Guarneri V:
Immune infiltrates in breast cancer: Recent updates and clinical
implications. Cells. 10:2232021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lee SJ, Yoon BR, Kim HY, Yoo SJ, Kang SW
and Lee WW: Activated platelets convert CD14+CD16-Into CD14+CD16+
monocytes with enhanced FcγR-mediated phagocytosis and skewed M2
polarization. Front Immunol. 11:6111332020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cassetta L and Pollard JW: Cancer
immunosurveillance: Role of patrolling monocytes. Cell Res. 26:3–4.
2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Szaflarska A, Baj-Krzyworzeka M, Siedlar
M, Weglarczyk K, Ruggiero I, Hajto B and Zembala M: Antitumor
response of CD14+/CD16+ monocyte subpopulation. Exp Hematol.
32:748–755. 2004. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sauer H, Wartenberg M and Hescheler J:
Reactive oxygen species as intracellular messengers during cell
growth and differentiation. Cell Physiol Biochem. 11:173–186. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Holmström KM and Finkel T: Cellular
mechanisms and physiological consequences of redox-dependent
signalling. Nat Rev Mol Cell Biol. 15:411–4121. 2014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Görlach A, Bertram K, Hudecova S and
Krizanova O: Calcium and ROS: A mutual interplay. Redox Biol.
6:260–271. 2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gordeeva AV, Zvyagilskaya RA and Labas YA:
Cross-talk between reactive oxygen species and calcium in living
cells. Biochemistry (Mosc). 68:1077–1080. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Brookes PS, Yoon Y, Robotham JL, Anders MW
and Sheu SS: Calcium, ATP, and ROS: A mitochondrial love-hate
triangle. Am J Physiol Cell Physiol. 287:C817–C833. 2004.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Xu H and Van Remmen H: The
SarcoEndoplasmic Reticulum Calcium ATPase (SERCA) pump: A potential
target for intervention in aging and skeletal muscle pathologies.
Skelet Muscle. 11:252021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Doblado L, Lueck C, Rey C, Samhan-Arias
AK, Prieto I, Stacchiotti A and Monsalve M: Mitophagy in human
diseases. Int J Mol Sci. 22:39032021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li J and Stanger BZ: How tumor cell
dedifferentiation drives immune evasion and resistance to
immunotherapy. Cancer Res. 80:4037–4041. 2020. View Article : Google Scholar : PubMed/NCBI
|