Bacterial metabolites: Effects on the development of breast cancer and therapeutic efficacy (Review)
- Authors:
- Yan Guo
- Wenyan Dong
- Dezheng Sun
- Xiang Zhao
- Zhiping Huang
- Chaoqian Liu
- Yuan Sheng
-
Affiliations: Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China, Department of Thyroid and Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China, Department of Hepatobiliary Surgery and Organ Transplantation, General Hospital of Southern Theater Command of People's Liberation Army, Guangzhou, Guangdong 51000, P.R. China - Published online on: March 4, 2025 https://doi.org/10.3892/ol.2025.14956
- Article Number: 210
This article is mentioned in:
Abstract
![]() |
Siegel RL, Giaquinto AN and Jemal A: Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kovacs T, Miko E, Ujlaki G, Yousef H, Csontos V, Uray K and Bai P: The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev. 40:1223–1249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mikó E, Vida A and Bai P: Translational aspects of the microbiome-to be exploited. Cell Biol Toxicol. 32:153–156. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mikó E, Kovács T, Sebő É, Tóth J, Csonka T, Ujlaki G, Sipos A, Szabó J, Méhes G and Bai P: Microbiome-microbial metabolome-cancer cell interactions in breast cancer-familiar, but unexplored. Cells. 8:2932019. View Article : Google Scholar : PubMed/NCBI | |
Kiss B, Mikó E, Sebő É, Toth J, Ujlaki G, Szabó J, Uray K, Bai P and Árkosy P: Oncobiosis and microbial metabolite signaling in pancreatic adenocarcinoma. Cancers. 12:10682020. View Article : Google Scholar : PubMed/NCBI | |
Kuo WT, Lee TC and Yu LC: Eritoran suppresses colon cancer by altering a functional balance in toll-like receptors that bind lipopolysaccharide. Cancer Res. 76:4684–4695. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen MC, Chen YL, Wang TW, Hsu HP and Lai MD: Membrane bile acid receptor TGR5 predicts good prognosis in ampullary adenocarcinoma patients with hyperbilirubinemia. Oncol Rep. 36:1997–2008. 2016. View Article : Google Scholar : PubMed/NCBI | |
McKee AM, Kirkup BM, Madgwick M, Fowler WJ, Price CA, Dreger SA, Ansorge R, Makin KA, Caim S, Le Gall G, et al: Antibiotic-induced disturbances of the gut microbiota result in accelerated breast tumor growth. iScience. 24:1030122021. View Article : Google Scholar : PubMed/NCBI | |
Jones GS, Feigelson HS, Falk RT, Hua X, Ravel J, Yu G, Flores R, Gail MH, Shi J, Xu X and Goedert JJ: Mammographic breast density and its association with urinary estrogens and the fecal microbiota in postmenopausal women. PLoS One. 14:e02161142019. View Article : Google Scholar : PubMed/NCBI | |
Wu AH, Tseng C, Vigen C, Yu Y, Cozen W, Garcia AA and Spicer D: Gut microbiome associations with breast cancer risk factors and tumor characteristics: A pilot study. Breast Cancer Res Treat. 182:451–463. 2020. View Article : Google Scholar : PubMed/NCBI | |
Frugé AD, Van Der Pol W, Rogers LQ, Morrow CD, Tsuruta Y and Demark-Wahnefried W: Fecal Akkermansia muciniphila is associated with body composition and microbiota diversity in overweight and obese women with breast cancer participating in a presurgical weight loss trial. J Acad Nutr Diet. 120:650–659. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yang Y, Su J, Zheng X, Wang C, Chen S, Liu J, Lv Y, Fan S, Zhao A, et al: Age-related compositional changes and correlations of gut microbiome, serum metabolome, and immune factor in rats. Geroscience. 43:709–725. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rahman S, O'Connor AL, Becker SL, Patel RK, Martindale RG and Tsikitis VL: Gut microbial metabolites and its impact on human health. Ann Gastroenterol. 36:360–368. 2023.PubMed/NCBI | |
Neagoe CX, Ionica M, Neagoe OC and Trifa AP: The Influence of microbiota on breast cancer: A review. Cancers. 16:34682024. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Tian T, Wei Z, Shih N, Feldman MD, Peck KN, DeMichele AM, Alwine JC and Robertson ES: Distinct microbial signatures associated with different breast cancer types. Front Microbiol. 9:9512018. View Article : Google Scholar : PubMed/NCBI | |
Bhatt AP, Redinbo MR and Bultman SJ: The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 67:326–344. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fernandes MR, Aggarwal P, Costa RGF, Cole AM and Trinchieri G: Targeting the gut microbiota for cancer therapy. Nat Rev Cancer. 22:703–722. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Li A, Wang Y and Zhang Y: Intratumoral microbiota: Roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther. 8:352023. View Article : Google Scholar : PubMed/NCBI | |
Cullin N, Antunes CA, Straussman R, Stein-Thoeringer CK and Elinav E: Microbiome and cancer. Cancer Cell. 39:1317–1341. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rao Malla R, Marni R, Kumari S, Chakraborty A and Lalitha P: Microbiome assisted tumor microenvironment: Emerging target of breast cancer. Clin Breast Cancer. 22:200–211. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kovtonyuk LV and McCoy KD: Microbial metabolites and immunotherapy: Basic rationale and clinical indications. Semin Immunol. 67:1017552023. View Article : Google Scholar : PubMed/NCBI | |
Han J, Zhang S, Xu Y, Pang Y, Zhang X, Hu Y, Chen H, Chen W, Zhang J and He W: Beneficial effect of antibiotics and microbial metabolites on expanded Vδ2Vγ9 T cells in hepatocellular carcinoma immunotherapy. Front Immunol. 11:13802020. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Kong L, Xiao L, Liu K, Cui H, Xin Q, Gu X, Jiang C and Wu J: The impact of the gut microbiome on tumor immunotherapy: From mechanism to application strategies. Cell Biosci. 13:1882023. View Article : Google Scholar : PubMed/NCBI | |
Vitorino M, Baptista de Almeida S, Alpuim Costa D, Faria A, Calhau C and Azambuja Braga S: Human microbiota and immunotherapy in breast cancer-a review of recent developments. Front Oncol. 11:8157722021. View Article : Google Scholar : PubMed/NCBI | |
Jia W, Xie G and Jia W: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 15:111–128. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ridlon JM, Kang DJ, Hylemon PB and Bajaj JS: Bile acids and the gut microbiome. Curr Opin Gastroenterol. 30:332–338. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Putluri V, Ambati CR, Dorsey TH, Putluri N and Ambs S: Liver- and microbiome-derived bile acids accumulate in human breast tumors and inhibit growth and improve patient survival. Clin Cancer Res. 25:5972–5983. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhu Q, Zai H, Zhang K, Zhang X, Luo N, Li X, Hu Y and Wu Y: L-norvaline affects the proliferation of breast cancer cells based on the microbiome and metabolome analysis. J Appl Microbiol. 133:1014–1026. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tsvetikova SA and Koshel EI: Microbiota and cancer: Host cellular mechanisms activated by gut microbial metabolites. Int J Med Microbiol. 310:1514252020. View Article : Google Scholar : PubMed/NCBI | |
Di Modica M, Arlotta V, Sfondrini L, Tagliabue E and Triulzi T: The link between the microbiota and HER2+ breast cancer: The new challenge of precision medicine. Front Oncol. 12:9471882022. View Article : Google Scholar : PubMed/NCBI | |
Jaye K, Li CG, Chang D and Bhuyan DJ: The role of key gut microbial metabolites in the development and treatment of cancer. Gut Microbes. 14:20388652022. View Article : Google Scholar : PubMed/NCBI | |
Krishnamurthy K, Wang G, Rokhfeld D and Bieberich E: Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Res. 10:R1062008. View Article : Google Scholar : PubMed/NCBI | |
Gándola YB, Fontana C, Bojorge MA, Luschnat TT, Moretton MA, Chiapetta DA, Verstraeten SV and González L: Concentration-dependent effects of sodium cholate and deoxycholate bile salts on breast cancer cells proliferation and survival. Mol Biol Rep. 47:3521–3539. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cong J, Liu P, Han Z, Ying W, Li C, Yang Y, Wang S, Yang J, Cao F, Shen J, et al: Bile acids modified by the intestinal microbiota promote colorectal cancer growth by suppressing CD8+ T cell effector functions. Immunity. 57:876–889. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mikó E, Vida A, Kovács T, Ujlaki G, Trencsényi G, Márton J, Sári Z, Kovács P, Boratkó A, Hujber Z, et al: Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim Biophys Acta Bioenerg. 1859:958–974. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Lin CC, Spasojevic I, Iversen ES, Chi JT and Marks JR: A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res. 16:4152014. View Article : Google Scholar : PubMed/NCBI | |
Sampsell K, Hao D and Reimer RA: The gut microbiota: A potential gateway to improved health outcomes in breast cancer treatment and survivorship. Int J Mol Sci. 21:92392020. View Article : Google Scholar : PubMed/NCBI | |
Luu TH, Bard JM, Carbonnelle D, Chaillou C, Huvelin JM, Bobin-Dubigeon C and Nazih H: Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells. Cell Oncol (Dordr). 41:13–24. 2018. View Article : Google Scholar : PubMed/NCBI | |
Eslami SZ, Majidzadeh AK, Halvaei S, Babapirali F and Esmaeili R: Microbiome and breast cancer: New role for an ancient population. Front Oncol. 10:1202020. View Article : Google Scholar : PubMed/NCBI | |
Hou H, Chen D, Zhang K, Zhang W, Liu T, Wang S, Dai X, Wang B, Zhong W and Cao H: Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Lett. 526:225–235. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R and Karampoor S: Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother. 139:1116192021. View Article : Google Scholar : PubMed/NCBI | |
Jaye K, Chang D, Li CG and Bhuyan DJ: Gut metabolites and breast cancer: The continuum of dysbiosis, breast cancer risk, and potential breast cancer therapy. Int J Mol Sci. 23:94902022. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y and Jiang X: The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res. 165:1054202021. View Article : Google Scholar : PubMed/NCBI | |
Thirunavukkarasan M, Wang C, Rao A, Hind T, Teo YR, Siddiquee AA, Goghari MAI, Kumar AP and Herr DR: Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLoS One. 12:e01863342017. View Article : Google Scholar : PubMed/NCBI | |
Park HS, Han JH, Park JW, Lee DH, Jang KW, Lee M, Heo KS and Myung CS: Sodium propionate exerts anticancer effect in mice bearing breast cancer cell xenograft by regulating JAK2/STAT3/ROS/p38 MAPK signaling. Acta Pharmacol Sin. 42:1311–1323. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhao KN and Vitetta L: Effects of intestinal microbial-elaborated butyrate on oncogenic signaling pathways. Nutrients. 11:10262019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Hu PC, Ma YB, Fan R, Gao FF, Zhang JW and Wei L: Sodium butyrate-induced apoptosis and ultrastructural changes in MCF-7 breast cancer cells. Ultrastruct Pathol. 40:200–204. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mandal M and Kumar R: Bcl-2 expression regulates sodium butyrate-induced apoptosis in human MCF-7 breast cancer cells. Cell Growth Differ. 7:311–318. 1996.PubMed/NCBI | |
Chopin V, Toillon RA, Jouy N and Le Bourhis X: Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells. Br J Pharmacol. 135:79–86. 2002. View Article : Google Scholar : PubMed/NCBI | |
He C, Liu Y, Ye S, Yin S and Gu J: Changes of intestinal microflora of breast cancer in premenopausal women. Eur J Clin Microbiol Infect Dis. 40:503–513. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dai ZL, Wu G and Zhu WY: Amino acid metabolism in intestinal bacteria: Links between gut ecology and host health. Front Biosci (Landmark Ed). 16:1768–1786. 2011. View Article : Google Scholar : PubMed/NCBI | |
Roager HM and Licht TR: Microbial tryptophan catabolites in health and disease. Nat Commun. 9:32942018. View Article : Google Scholar : PubMed/NCBI | |
Renga G, Nunzi E, Pariano M, Puccetti M, Bellet MM, Pieraccini G, D'Onofrio F, Santarelli I, Stincardini C, Aversa F, et al: Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan metabolite. J Immunother Cancer. 10:e0037252022. View Article : Google Scholar : PubMed/NCBI | |
Sári Z, Mikó E, Kovács T, Boratkó A, Ujlaki G, Jankó L, Kiss B, Uray K and Bai P: Indoxylsulfate, a metabolite of the microbiome, has cytostatic effects in breast cancer via activation of AHR and PXR receptors and induction of oxidative stress. Cancers. 12:29152020. View Article : Google Scholar : PubMed/NCBI | |
Sári Z, Mikó E, Kovács T, Jankó L, Csonka T, Lente G, Sebő É, Tóth J, Tóth D, Árkosy P, et al: Indolepropionic acid, a metabolite of the microbiome, has cytostatic properties in breast cancer by activating AHR and PXR receptors and inducing oxidative stress. Cancers (Basel). 12:24112020. View Article : Google Scholar : PubMed/NCBI | |
Kovács T, Mikó E, Vida A, Sebő É, Toth J, Csonka T, Boratkó A, Ujlaki G, Lente G, Kovács P, et al: Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci Rep. 9:13002019. View Article : Google Scholar : PubMed/NCBI | |
Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E, et al: The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 368:973–980. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shcheblyakov DV, Logunov DY, Tukhvatulin AI, Shmarov MM, Naroditsky BS and Gintsburg AL: Toll-like receptors (TLRs): The role in tumor progression. Acta Naturae. 2:21–29. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li J, Yin J, Shen W, Gao R, Liu Y, Chen Y, Li X, Liu C, Xiang R and Luo N: TLR4 promotes breast cancer metastasis via Akt/GSK3β/β-catenin pathway upon LPS stimulation. Anat Rec (Hoboken). 300:1219–1229. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liao SJ, Zhou YH, Yuan Y, Li D, Wu FH, Wang Q, Zhu JH, Yan B, Wei JJ, Zhang GM and Feng ZH: Triggering of toll-like receptor 4 on metastatic breast cancer cells promotes αvβ3-mediated adhesion and invasive migration. Breast Cancer Res Treat. 133:853–863. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Wang B, Wang T, Xu L, He C, Wen H, Yan J, Su H and Zhu X: Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis. PLoS One. 9:e1099802014. View Article : Google Scholar : PubMed/NCBI | |
Avand A, Akbari V and Shafizadegan S: In vitro cytotoxic activity of a Lactococcus lactis antimicrobial peptide against breast cancer cells. Iran J Biotechnol. 16:e18672018. View Article : Google Scholar : PubMed/NCBI | |
Paiva AD, De Oliveira MD, De Paula SO, Baracat-Pereira MC, Breukink E and Mantovani HC: Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology (Reading). 158:2851–2858. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kamarajan P, Hayami T, Matte B, Liu Y, Danciu T, Ramamoorthy A, Worden F, Kapila S and Kapila Y: Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS One. 10:e01310082015. View Article : Google Scholar : PubMed/NCBI | |
Ahmadi S, Ghollasi M and Hosseini HM: The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells. Microb Pathog. 111:193–197. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A, Perkins AV, Davey AK, Chess-Williams R, Kiefel MJ, Arora D and Grant GD: Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins (Basel). 8:2362016. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Wu Y, Alfred AT, Wei P and Yang S: Anticancer effects of pyocyanin on HepG2 human hepatoma cells. Lett Appl Microbiol. 58:541–548. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moayedi A, Nowroozi J and Sepahy AA: Cytotoxic effect of pyocyanin on human pancreatic cancer cell line (Panc-1). Iran J Basic Med Sci. 21:794–799. 2018.PubMed/NCBI | |
Abdelaziz AA, Kamer AMA, Al-Monofy KB and Al-Madboly LA: A purified and lyophilized Pseudomonas aeruginosa derived pyocyanin induces promising apoptotic and necrotic activities against MCF-7 human breast adenocarcinoma. Microb Cell Fact. 21:2622022. View Article : Google Scholar : PubMed/NCBI | |
Geng HW, Yin FY, Zhang ZF, Gong X and Yang Y: Butyrate suppresses glucose metabolism of colorectal cancer cells via GPR109a-AKT signaling pathway and enhances chemotherapy. Front Mol Biosci. 8:6348742021. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Jiang W, Xiao C, Yang W, Qin Q, Mao A, Tan Q, Lian B and Wei C: Sodium butyrate combined with docetaxel for the treatment of lung adenocarcinoma A549 cells by targeting Gli1. Onco Targets Ther. 13:8861–8875. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lajkó E, Spring S, Hegedüs R, Biri-Kovács B, Ingebrandt S, Mező G and Kőhidai L: Comparative cell biological study of in vitro antitumor and antimetastatic activity on melanoma cells of GnRH-III-containing conjugates modified with short-chain fatty acids. Beilstein J Org Chem. 14:2495–2509. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Wei F, Xu J, Wang Y, Chen L, Wang J and Guan X: Trastuzumab enhances the anti-tumor effects of the histone deacetylase inhibitor sodium butyrate on a HER2-overexpressing breast cancer cell line. Int J Mol Med. 28:985–991. 2011.PubMed/NCBI | |
Andrade FO, Nagamine MK, Conti AD, Chaible LM, Fontelles CC, Jordão Junior AA, Vannucchi H, Dagli ML, Bassoli BK, Moreno FS and Ong TP: Efficacy of the dietary histone deacetylase inhibitor butyrate alone or in combination with vitamin A against proliferation of MCF-7 human breast cancer cells. Braz J Med Biol Res. 45:841–850. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, Matsumoto S, Inoue K and Muto M: Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 3:e2028952020. View Article : Google Scholar : PubMed/NCBI | |
Ren S, Feng L, Liu H, Mao Y and Yu Z: Gut microbiome affects the response to immunotherapy in non-small cell lung cancer. Thorac Cancer. 15:1149–1163. 2024. View Article : Google Scholar : PubMed/NCBI | |
Muradas TC, Freitas RD, Goncalves JI, Xavier FA and Marinowic DR: Potential antitumor effects of short-chain fatty acids in breast cancer models. Am J Cancer Res. 14:1999–2019. 2024. View Article : Google Scholar : PubMed/NCBI | |
Coutzac C, Jouniaux JM, Paci A, Schmidt J, Mallardo D, Seck A, Asvatourian V, Cassard L, Saulnier P, Lacroix L, et al: Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 11:21682020. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Basnet R, Zhen C, Ma S, Guo X, Wang Z and Yuan Y: Trimethylamine N-oxide promotes the proliferation and migration of hepatocellular carcinoma cell through the MAPK pathway. Discov Oncol. 15:3462024. View Article : Google Scholar : PubMed/NCBI | |
Jalandra R, Dalal N, Yadav AK, Verma D, Sharma M, Singh R, Khosla A, Kumar A and Solanki PR: Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer. Appl Microbiol Biotechnol. 105:7651–7660. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Rong X, Zhao G, Zhou Y, Xiao Y, Ma D, Jin X, Wu Y, Yan Y, Yang H, et al: The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab. 34:581–594.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Dai H, Lu Y, Li R, Gao C and Pan S: Trimethylamine N-oxide promotes cell proliferation and angiogenesis in colorectal cancer. J Immunol Res. 2022:70438562022. View Article : Google Scholar : PubMed/NCBI | |
Chiba A, Bawaneh A, Velazquez C, Clear KYJ, Wilson AS, Howard-McNatt M, Levine EA, Levi-Polyachenko N, Yates-Alston SA, Diggle SP, et al: Neoadjuvant chemotherapy shifts breast tumor microbiota populations to regulate drug responsiveness and the development of metastasis. Mol Cancer Res. 18:130–139. 2020. View Article : Google Scholar : PubMed/NCBI | |
Groizeleau J, Rybtke M, Andersen JB, Berthelsen J, Liu Y, Yang L, Nielsen TE, Kaever V, Givskov M and Tolker-Nielsen T: The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation. Microbiology (Reading). 162:1797–1807. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abdelaziz AA, Kamer AMA, Al-Monofy KB and Al-Madboly LA: Pseudomonas aeruginosa's greenish-blue pigment pyocyanin: Its production and biological activities. Microb Cell Fact. 22:1102023. View Article : Google Scholar : PubMed/NCBI | |
Chiba A, Bawaneh A, Velazquez C, Clear KYJ, Wilson AS, Howard-McNatt M, Levine EA, Levi-Polyachenko N, Yates-Alston SA, Diggle SP, et al: Neoadjuvant Chemotherapy shifts breast tumor microbiota populations to regulate drug responsiveness and the development of metastasis. Mol Cancer Res. 18:130–139. 2020. View Article : Google Scholar : PubMed/NCBI | |
Baindara P and Mandal SM: Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie. 177:164–189. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rana K, Sharma R and Preet S: Augmented therapeutic efficacy of 5-fluorouracil in conjunction with lantibiotic nisin against skin cancer. Biochem Biophys Res Commun. 520:551–559. 2019. View Article : Google Scholar : PubMed/NCBI | |
Coker OO, Liu C, Wu WKK, Wong SH, Jia W, Sung JJY and Yu J: Altered gut metabolites and microbiota interactions are implicated in colorectal carcinogenesis and can be non-invasive diagnostic biomarkers. Microbiome. 10:352022. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Zhang JH, Chen XX, Ren HL, Feng XL, Wang JL and Xiao JH: Combination of L-Arginine and L-Norvaline protects against pulmonary fibrosis progression induced by bleomycin in mice. Biomed Pharmacother. 113:1087682019. View Article : Google Scholar : PubMed/NCBI | |
Ren X, Wang N, Zhou Y, Song A, Jin G, Li Z and Luan Y: An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater. 124:179–190. 2021. View Article : Google Scholar : PubMed/NCBI | |
Arlauckas SP, Garren SB, Garris CS, Kohler RH, Oh J, Pittet MJ and Weissleder R: Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Theranostics. 8:5842–5854. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yurdagul AJ, Subramanian M, Wang X, Crown SB, Ilkayeva OR, Darville L, Kolluru GK, Rymond CC, Gerlach BD, Zheng Z, et al: Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31:518–533.e10. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy JM, Dequenne I, de Timary P and Cani PD: How probiotics affect the microbiota. Front Cell Infect Microbiol. 9:4542020. View Article : Google Scholar : PubMed/NCBI | |
German R, Marino N, Hemmerich C, Podicheti R, Rusch DB, Stiemsma LT, Gao H, Xuei X, Rockey P and Storniolo AM: Exploring breast tissue microbial composition and the association with breast cancer risk factors. Breast Cancer Res. 25:822023. View Article : Google Scholar : PubMed/NCBI | |
Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A and Ghasemi Y: Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods. 8:922019. View Article : Google Scholar : PubMed/NCBI |