1
|
Chang ET, Ye W, Zeng YX and Adami HO: The
evolving epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol
Biomarkers Prev. 30:1035–1047. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Chen YP, Chan ATC, Le QT, Blanchard P, Sun
Y and Ma J: Nasopharyngeal carcinoma. Lancet. 394:64–80. 2019.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Caudell JJ, Gillison ML, Maghami E,
Spencer S, Pfister DG, Adkins D, Birkeland AC, Brizel DM, Busse PM,
Cmelak AJ, et al: NCCN Guidelines® insights: Head and
neck cancers, version 1.2022. J Natl Compr Canc Netw. 20:224–234.
2022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lechner M, Schartinger VH, Steele CD, Nei
WL, Ooft ML, Schreiber LM, Pipinikas CP, Chung GT, Chan YY, Wu F,
et al: Somatostatin receptor 2 expression in nasopharyngeal cancer
is induced by Epstein Barr virus infection: Impact on prognosis,
imaging and therapy. Nat Commun. 12:1172021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang Y, Rumgay H, Li M, Cao S and Chen W:
Nasopharyngeal cancer incidence and mortality in 185 countries in
2020 and the projected burden in 2040: Population-based global
epidemiological profiling. JMIR Public Health Surveill.
9:e499682023. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Ma J, Sun Y, Liu X, Yang KY, Zhang N, Jin
F, Zou G and Chen YP: PD-1 blockade with sintilimab plus induction
chemotherapy and concurrent chemoradiotherapy (IC-CCRT) versus
IC-CCRT in locoregionally-advanced nasopharyngeal carcinoma
(LANPC): A multicenter, phase 3, randomized controlled trial
(CONTINUUM). Head And Neck. 41 (Suppl 17):LBA60022023.
|
7
|
Schwartz JL, Mustafi R, Beckett MA and
Weichselbaum RR: DNA double-strand break rejoining rates, inherent
radiation sensitivity and human tumour response to radiotherapy. Br
J Cancer. 74:37–42. 1996. View Article : Google Scholar : PubMed/NCBI
|
8
|
Heylmann D, Rödel F, Kindler T and Kaina
B: Radiation sensitivity of human and murine peripheral blood
lymphocytes, stem and progenitor cells. Biochim Biophys Acta.
1846:121–129. 2014.PubMed/NCBI
|
9
|
Trowell OA: The sensitivity of lymphocytes
to ionising radiation. J Pathol Bacteriol. 64:687–704. 1952.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Marciscano AE, Ghasemzadeh A, Nirschl TR,
Theodros D, Kochel CM, Francica BJ, Muroyama Y, Anders RA, Sharabi
AB, Velarde E, et al: Elective nodal irradiation attenuates the
combinatorial efficacy of stereotactic radiation therapy and
immunotherapy. Clin Cancer Res. 24:5058–5071. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Karapetyan L, Iheagwara UK, Olson AC,
Chmura SJ, Skinner HK and Luke JJ: Radiation dose, schedule, and
novel systemic targets for radio-immunotherapy combinations. J Natl
Cancer Inst. 115:1278–1293. 2023. View Article : Google Scholar : PubMed/NCBI
|
12
|
Deng L, Liang H, Xu M, Yang X, Burnette B,
Arina A, Li XD, Mauceri H, Beckett M, Darga T, et al:
STING-Dependent cytosolic DNA sensing promotes radiation-induced
type i interferon-dependent antitumor immunity in immunogenic
tumors. Immunity. 41:843–852. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sen T, Rodriguez BL, Chen L, Corte CMD,
Morikawa N, Fujimoto J, Cristea S, Nguyen T, Diao L, Li L, et al:
Targeting DNA damage response promotes antitumor immunity through
STING-mediated T-cell activation in small cell lung cancer. Cancer
Discov. 9:646–661. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Du SS, Chen GW, Yang P, Chen YX, Hu Y,
Zhao QQ, Zhang Y, Liu R, Zheng DX, Zhou J, et al: Radiation therapy
promotes hepatocellular carcinoma immune cloaking via PD-L1
upregulation induced by cGAS-STING activation. Int J Radiat Oncol
Biol Phys. 112:1243–1255. 2022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Reits EA, Hodge JW, Herberts CA, Groothuis
TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH,
Neijssen J, et al: Radiation modulates the peptide repertoire,
enhances MHC class I expression, and induces successful antitumor
immunotherapy. J Exp Med. 203:1259–1271. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Parikh F, Duluc D, Imai N, Clark A,
Misiukiewicz K, Bonomi M, Gupta V, Patsias A, Parides M, Demicco
EG, et al: Chemoradiotherapy-induced upregulation of PD-1
antagonizes immunity to HPV-related oropharyngeal cancer. Cancer
Res. 74:7205–7216. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Vanpouille-Box C, Diamond JM, Pilones KA,
Zavadil J, Babb JS, Formenti SC, Barcellos-Hoff MH and Demaria S:
TGFβ is a master regulator of radiation therapy-induced antitumor
immunity. Cancer Res. 75:2232–2242. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Filatenkov A, Baker J, Mueller AM, Kenkel
J, Ahn GO, Dutt S, Zhang N, Kohrt H, Jensen K, Dejbakhsh-Jones S,
et al: Ablative tumor radiation can change the tumor immune cell
microenvironment to induce durable complete remissions. Clin Cancer
Res. 21:3727–3739. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Galluzzi L, Humeau J, Buqué A, Zitvogel L
and Kroemer G: Immunostimulation with chemotherapy in the era of
immune checkpoint inhibitors. Nat Rev Clin Oncol. 17:725–741. 2020.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang L, Zhang W, Li Z, Lin S, Zheng T,
Hao B, Hou Y, Zhang Y, Wang K, Qin C, et al: Mitochondria
dysfunction in CD8+ T cells as an important contributing factor for
cancer development and a potential target for cancer treatment: A
review. J Exp Clin Cancer Res. 41:2272022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Krishna S, Lowery FJ, Copeland AR,
Bahadiroglu E, Mukherjee R, Jia L, Anibal JT, Sachs A, Adebola SO,
Gurusamy D, et al: Stem-like CD8 T cells mediate response of
adoptive cell immunotherapy against human cancer. Science.
370:1328–1334. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kagamu H, Kitano S, Yamaguchi O, Yoshimura
K, Horimoto K, Kitazawa M, Fukui K, Shiono A, Mouri A, Nishihara F,
et al: CD4(+) T-cell immunity in the peripheral blood correlates
with response to anti-pd-1 therapy. Cancer Immunol Res. 8:334–344.
2020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Scharping NE, Menk AV, Moreci RS,
Whetstone RD, Dadey RE, Watkins SC, Ferris RL and Delgoffe GM: The
tumor microenvironment represses T cell mitochondrial biogenesis to
drive intratumoral T cell metabolic insufficiency and dysfunction.
Immunity. 45:374–388. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wu H, Zhao X, Hochrein SM, Eckstein M,
Gubert GF, Knöpper K, Mansilla AM, Öner A, Doucet-Ladevèze R,
Schmitz W, et al: Mitochondrial dysfunction promotes the transition
of precursor to terminally exhausted T cells through
HIF-1α-mediated glycolytic reprogramming. Nat Commun. 14:68582023.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhong X, Wu H, Ouyang C, Zhang W, Shi Y,
Wang YC, Ann DK, Gwack Y, Shang W and Sun Z: Ncoa2 Promotes CD8+ T
cell-mediated antitumor immunity by stimulating T-cell activation
via upregulation of PGC-1α critical for mitochondrial function.
Cancer Immunol Res. 11:1414–1431. 2023. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dyikanov D, Zaitsev A, Vasileva T, Wang I,
Sokolov AA, Bolshakov ES, Frank A, Turova P, Golubeva O, Gantseva
A, et al: Comprehensive peripheral blood immunoprofiling reveals
five immunotypes with immunotherapy response characteristics in
patients with cancer. Cancer Cell. 42:759–779.e12. 2024. View Article : Google Scholar : PubMed/NCBI
|
27
|
Menk AV, Scharping NE, Rivadeneira DB,
Calderon MJ, Watson MJ, Dunstane D, Watkins SC and Delgoffe GM:
4-1BB costimulation induces T cell mitochondrial function and
biogenesis enabling cancer immunotherapeutic responses. J Exp Med.
215:1091–1100. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fischer M, Bantug GR, Dimeloe S, Gubser
PM, Burgener AV, Grählert J, Balmer ML, Develioglu L, Steiner R,
Unterstab G, et al: Early effector maturation of naïve human CD8(+)
T cells requires mitochondrial biogenesis. Eur J Immunol.
48:1632–1643. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sukumar M, Liu J, Mehta GU, Patel SJ,
Roychoudhuri R, Crompton JG, Klebanoff CA, Ji Y, Li P, Yu Z, et al:
Mitochondrial membrane potential identifies cells with enhanced
stemness for cellular therapy. Cell Metab. 23:63–76. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Amin MB, Greene FL, Edge SB, Compton CC,
Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR and
Winchester DP: The eighth edition AJCC cancer staging manual:
Continuing to build a bridge from a population-based to a more
‘personalized’ approach to cancer staging. CA Cancer J Clin.
67:93–99. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lee AW, Ng WT, Pan JJ, Poh SS, Ahn YC,
AlHussain H, Corry J, Grau C, Grégoire V, Harrington KJ, et al:
International guideline for the delineation of the clinical target
volumes (CTV) for nasopharyngeal carcinoma. Radiother Oncol.
126:25–36. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
International Commission on Radiation
Units and Measurements, . Prescribing, recording, and reporting
photon beam therapy. ICRU Report 50. ICRU; Bethesda, MD: 1993
|
33
|
International Commission on Radiation
Units and Measurements, . Prescribing, recording, and reporting
photon beam therapy (Supplement to ICRU Report 50). ICRU Report 62.
ICRU; Bethesda, MD: 1999
|
34
|
Schwartz LH, Litière S, de Vries E, Ford
R, Gwyther S, Mandrekar S, Shankar L, Bogaerts J, Chen A, Dancey J,
et al: RECIST 1.1-Update and clarification: From the RECIST
committee. Eur J Cancer. 62:132–137. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Maecker HT, McCoy JP and Nussenblatt R:
Standardizing immunophenotyping for the human immunology project.
Nat Rev Immunol. 12:191–200. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang B, Chen Z, Huang Y, Ding J, Lin Y,
Wang M and Li X: Mitochondrial mass of circulating NK cells as a
novel biomarker in severe SARS-CoV-2 infection. Int
Immunopharmacol. 124:1108392023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liao R, Wu Y, Qin L, Jiang Z, Gou S, Zhou
L, Hong Q, Li Y, Shi J, Yao Y, et al: BCL11B and the NuRD complex
cooperatively guard T-cell fate and inhibit OPA1-mediated
mitochondrial fusion in T cells. EMBO J. 42:e1134482023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Scharping NE, Rivadeneira DB, Menk AV,
Vignali PDA, Ford BR, Rittenhouse NL, Peralta R, Wang Y, Wang Y,
DePeaux K, et al: Mitochondrial stress induced by continuous
stimulation under hypoxia rapidly drives T cell exhaustion. Nat
Immunol. 22:205–215. 2021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dong Y, Li X, Zhang L, Zhu Q, Chen C, Bao
J and Chen Y: CD4(+) T cell exhaustion revealed by high PD-1 and
LAG-3 expression and the loss of helper T cell function in chronic
hepatitis B. BMC Immunol. 20:272019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pandit M, Kil YS, Ahn JH, Pokhrel RH, Gu
Y, Mishra S, Han Y, Ouh YT, Kang B, Jeong MS, et al: Methionine
consumption by cancer cells drives a progressive upregulation of
PD-1 expression in CD4 T cells. Nat Commun. 14:25932023. View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu X, Zhang Y, Yang KY, Zhang N, Jin F,
Zou GR, Zhu XD, Xie FY, Liang XY, Li WF, et al:
Induction-concurrent chemoradiotherapy with or without sintilimab
in patients with locoregionally advanced nasopharyngeal carcinoma
in China (CONTINUUM): A multicentre, open-label, parallel-group,
randomised, controlled, phase 3 trial. Lancet. 403:2720–2731. 2024.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu H, Zhao Q, Tan L, Wu X, Huang R, Zuo
Y, Chen L, Yang J, Zhang ZX, Ruan W, et al: Neutralizing IL-8
potentiates immune checkpoint blockade efficacy for glioma. Cancer
Cell. 41:693–710.e8. 2023. View Article : Google Scholar : PubMed/NCBI
|
43
|
You R, Hua YJ, Liu YP, Yang Q, Zhang YN,
Li JB, Li CF, Zou X, Yu T, Cao JY, et al: Concurrent
chemoradiotherapy with or without anti-EGFR-targeted treatment for
stage II–IVb nasopharyngeal carcinoma: Retrospective analysis with
a large cohort and long follow-up. Theranostics. 7:2314–2324. 2017.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Cao C, Fang Y, Jiang F, Jin Q, Jin T,
Huang S, Hu Q, Chen Y, Piao Y, Hua Y, et al: Concurrent nimotuzumab
and intensity-modulated radiotherapy for elderly patients with
locally advanced nasopharyngeal carcinoma. Cancer Sci.
115:2729–2737. 2024. View Article : Google Scholar : PubMed/NCBI
|
45
|
Teng F, Cui G, Qian L and Zhao L: Changes
of T Lymphocyte subsets in peripheral blood of patients with
intermediate and advanced cervical cancer before and after
nimotuzumab combined with chemoradiotherapy. Int Arch Allergy
Immunol. 184:85–97. 2023. View Article : Google Scholar : PubMed/NCBI
|
46
|
Liu Y, He S, Wang XL, Peng W, Chen QY, Chi
DM, Chen JR, Han BW, Lin GW, Li YQ, et al: Tumour heterogeneity and
intercellular networks of nasopharyngeal carcinoma at single cell
resolution. Nat Commun. 12:7412021. View Article : Google Scholar : PubMed/NCBI
|
47
|
Lv J, Wei Y, Yin JH, Chen YP, Zhou GQ, Wei
C, Liang XY, Zhang Y, Zhang CJ, He SW, et al: The tumor immune
microenvironment of nasopharyngeal carcinoma after gemcitabine plus
cisplatin treatment. Nat Med. 29:1424–1436. 2023. View Article : Google Scholar : PubMed/NCBI
|
48
|
Xie X, Gong S, Jin H, Yang P, Xu T, Cai Y,
Guo C, Zhang R, Lou F, Yang W, et al: Radiation-induced lymphopenia
correlates with survival in nasopharyngeal carcinoma: Impact of
treatment modality and the baseline lymphocyte count. Radiat Oncol.
15:652020. View Article : Google Scholar : PubMed/NCBI
|
49
|
Stratton JA, Byfield PE, Byfield JE, Small
RC, Benfield J and Pilch Y: A comparison of the acute effects of
radiation therapy, including or excluding the thymus, on the
lymphocyte subpopulations of cancer patients. J Clin Invest.
56:88–97. 1975. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wang Q, Li S, Qiao S, Zheng Z, Duan X and
Zhu X: Changes in T lymphocyte subsets in different tumors before
and after radiotherapy: A meta-analysis. Front Immunol.
12:6486522021. View Article : Google Scholar : PubMed/NCBI
|
51
|
Mahnke YD, Brodie TM, Sallusto F, Roederer
M and Lugli E: The who's who of T-cell differentiation: Human
memory T-cell subsets. Eur J Immunol. 43:2797–2809. 2013.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Gicobi JK, Mao Z, DeFranco G, Hirdler JB,
Li Y, Vianzon VV, Dellacecca ER, Hsu MA, Barham W, Yan Y, et al:
Salvage therapy expands highly cytotoxic and metabolically fit
resilient CD8(+) T cells via ME1 up-regulation. Sci Adv.
9:eadi24142023. View Article : Google Scholar : PubMed/NCBI
|
53
|
Ma L, Han Q, Cheng L, Song H, Qiang R, Xu
P, Gao F, Zhu L and Xu J: Altered mitochondrial mass and low
mitochondrial membrane potential of immune cells in patients with
HBV infection and correlation with liver inflammation. Front
Immunol. 15:14776462024. View Article : Google Scholar : PubMed/NCBI
|
54
|
Andrews LP, Butler SC, Cui J, Cillo AR,
Cardello C, Liu C, Brunazzi EA, Baessler A, Xie B, Kunning SR, et
al: LAG-3 and PD-1 synergize on CD8(+) T cells to drive T cell
exhaustion and hinder autocrine IFN-γ-dependent anti-tumor
immunity. Cell. 187:4355–4372.e22. 2024. View Article : Google Scholar : PubMed/NCBI
|
55
|
Ogando J, Sáez ME, Santos J,
Nuevo-Tapioles C, Gut M, Esteve-Codina A, Heath S, González-Pérez
A, Cuezva JM, Lacalle RA and Mañes S: PD-1 signaling affects
cristae morphology and leads to mitochondrial dysfunction in human
CD8(+) T lymphocytes. J Immunother Cancer. 7:1512019. View Article : Google Scholar : PubMed/NCBI
|
56
|
Yang X, Li Q and Zeng T: Peripheral CD4(+)
T cells correlate with response and survival in patients with
advanced non-small cell lung cancer receiving chemo-immunotherapy.
Front Immunol. 15:13645072024. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhu M and Li X, Cheng X, Yi X, Ye F and Li
X, Hu Z, Zhang L, Nie J and Li X: Association of the tissue
infiltrated and peripheral blood immune cell subsets with response
to radiotherapy for rectal cancer. BMC Med Genomics. 15 (Suppl
2):S1072022. View Article : Google Scholar : PubMed/NCBI
|
58
|
Kresovich JK, O'Brien KM, Xu Z, Weinberg
CR, Sandler DP and Taylor JA: Circulating leukocyte subsets before
and after a breast cancer diagnosis and therapy. JAMA Netw Open.
7:e23561132024. View Article : Google Scholar : PubMed/NCBI
|
59
|
Wang Y, Radfar S and Khong HT: Activated
CD4+ T cells enhance radiation effect through the cooperation of
interferon-gamma and TNF-alpha. BMC Cancer. 10:602010. View Article : Google Scholar : PubMed/NCBI
|
60
|
Rackov G, Zaniani PT, Del Pino S, Shokri
R, Monserrat J, Alvarez-Mon M, Martinez-A C and Balomenos D:
Mitochondrial reactive oxygen is critical for IL-12/IL-18-induced
IFN-γ production by CD4(+) T cells and is regulated by Fas/FasL
signaling. Cell Death Dis. 13:5312022. View Article : Google Scholar : PubMed/NCBI
|
61
|
Herrera FG, Ronet C, de Olza MO, Barras D,
Crespo I, Andreatta M, Corria-Osorio J, Spill A, Benedetti F,
Genolet R, et al: Low-Dose radiotherapy reverses tumor immune
desertification and resistance to immunotherapy. Cancer Discov.
12:108–133. 2022. View Article : Google Scholar : PubMed/NCBI
|
62
|
Fraietta JA, Lacey SF, Orlando EJ,
Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y,
O'Connor RS, Hwang WT, et al: Determinants of response and
resistance to CD19 chimeric antigen receptor (CAR) T cell therapy
of chronic lymphocytic leukemia. Nat Med. 24:563–571. 2018.
View Article : Google Scholar : PubMed/NCBI
|