Screening of genomic imbalances in glioblastoma multiforme using high-resolution comparative genomic hybridization

  • Authors:
    • Vladimíra Vranová
    • Eva NeCesalová
    • Petr Kuglík
    • Pavel Cejpek
    • Martina PeSáková
    • Eva Budínská
    • JiRina Relichová
    • Renata Veselská
  • View Affiliations

  • Published online on: February 1, 2007     https://doi.org/10.3892/or.17.2.457
  • Pages: 457-464
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Comparative genomic hybridization (CGH) is a molecular cytogenetic technique that allows the genome-wide analysis of DNA sequence copy number differences. We applied conventional CGH and the recently developed high-resolution CGH (HR-CGH) to tumour samples from 18 patients with glioblastoma multiforme (GBM) in order to compare the sensitivity of CGH and HR-CGH in the screening of chromosomal abnormalities. The abnormalities were studied in topologically different central and peripheral tumour parts. A total of 78 different changes were observed using CGH (0-16 per tumour, median 3.5) and 154 using HR-CGH (0-21 per tumour, median 6). Using HR-CGH, losses were more frequent than gains. The representation of the most prominent changes revealed by both methods was similar and was comprised of the amplification of 7q12 and 12q13-q15, the gain of 7, 3q and 19, and the loss of 10, 9p, and 13q. However, HR-CGH detected certain other abnormalities (the loss of 6, 14q, 15q and 18q, and the gain of 19), which were rarely revealed by CGH. Using HR-CGH, the numbers and types of chromosomal changes detected in the central and peripheral parts of GBM were almost the same. The loss of chromosomes 10 and 9p and the gain of chromosomes 7 and 19 were the most frequent chromosomal alterations in both tumour parts. Our results from the GBM analysis show that HR-CGH technology can reveal new, recurrent genetic alterations involving the genes known to participate in tumorigenesis and in the progression of several human malignancies, thus allowing for a more accurate genetic characterization of these tumours.

Related Articles

Journal Cover

February 2007
Volume 17 Issue 2

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Vranová V, NeCesalová E, Kuglík P, Cejpek P, PeSáková M, Budínská E, Relichová J and Veselská R: Screening of genomic imbalances in glioblastoma multiforme using high-resolution comparative genomic hybridization. Oncol Rep 17: 457-464, 2007.
APA
Vranová, V., NeCesalová, E., Kuglík, P., Cejpek, P., PeSáková, M., Budínská, E. ... Veselská, R. (2007). Screening of genomic imbalances in glioblastoma multiforme using high-resolution comparative genomic hybridization. Oncology Reports, 17, 457-464. https://doi.org/10.3892/or.17.2.457
MLA
Vranová, V., NeCesalová, E., Kuglík, P., Cejpek, P., PeSáková, M., Budínská, E., Relichová, J., Veselská, R."Screening of genomic imbalances in glioblastoma multiforme using high-resolution comparative genomic hybridization". Oncology Reports 17.2 (2007): 457-464.
Chicago
Vranová, V., NeCesalová, E., Kuglík, P., Cejpek, P., PeSáková, M., Budínská, E., Relichová, J., Veselská, R."Screening of genomic imbalances in glioblastoma multiforme using high-resolution comparative genomic hybridization". Oncology Reports 17, no. 2 (2007): 457-464. https://doi.org/10.3892/or.17.2.457