Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review)
- Authors:
- Yuzhu Hou
- Xiujun Zhao
- Xiaoqian Nie
-
Affiliations: Department of Gynecology, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China - Published online on: January 26, 2024 https://doi.org/10.3892/or.2024.8709
- Article Number: 50
-
Copyright: © Hou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Arora T, Mullangi S and Lekkala MR: Ovarian Cancer. StatPearls StatPearls Publishing; Treasure Island: 2023 | |
Kuroki L and Guntupalli SR: Treatment of epithelial ovarian cancer. BMJ. 371:m37732020. View Article : Google Scholar : PubMed/NCBI | |
Zheng RS, Zhang SW, Sun KX, Chen R, Wang SM, Li L, Zeng HM, Wei WW and He J: Cancer statistics in China, 2016. Zhonghua Zhong Liu Za Zhi. 45:212–220. 2023.(In Chinese). PubMed/NCBI | |
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Penny SM: Ovarian Cancer: An Overview. Radiol Technol. 91:561–575. 2020.PubMed/NCBI | |
Myers JA and Miller JS: Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 18:85–100. 2021. View Article : Google Scholar : PubMed/NCBI | |
Becker PS, Suck G, Nowakowska P, Ullrich E, Seifried E, Bader P, Tonn T and Seidl C: Selection and expansion of natural killer cells for NK cell-based immunotherapy. Cancer Immunol Immunother. 65:477–484. 2016. View Article : Google Scholar : PubMed/NCBI | |
Geller MA, Knorr DA, Hermanson DA, Pribyl L, Bendzick L, McCullar V, Miller JS and Kaufman DS: Intraperitoneal delivery of human natural killer cells for treatment of ovarian cancer in a mouse xenograft model. Cytotherapy. 15:1297–1306. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lotzová E, Savary CA, Freedman RS, Edwards CL and Wharton JT: Recombinant IL-2-activated NK cells mediate LAK activity against ovarian cancer. Int J Cancer. 42:225–231. 1988. View Article : Google Scholar : PubMed/NCBI | |
da Silva RF, Petta CA, Derchain SF, Alici E and Guimarães F: Up-regulation of DNAM-1 and NKp30, associated with improvement of NK cells activation after long-term culture of mononuclear cells from patients with ovarian neoplasia. Human Immunol. 75:777–784. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pandey V, Oyer JL, Igarashi RY, Gitto SB, Copik AJ and Altomare DA: Anti-ovarian tumor response of donor peripheral blood mononuclear cells is due to infiltrating cytotoxic NK cells. Oncotarget. 7:7318–7328. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Caligiuri MA and Yu J: Harnessing IL-15 signaling to potentiate NK cell-mediated cancer immunotherapy. Trends Immunol. 43:833–847. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hoogstad-van Evert JS, Cany J, van den Brand D, Oudenampsen M, Brock R, Torensma R, Bekkers RL, Jansen JH, Massuger LF and Dolstra H: Umbilical cord blood CD34+ progenitor-derived NK cells efficiently kill ovarian cancer spheroids and intraperitoneal tumors in NOD/SCID/IL2Rgnull mice. Oncoimmunology. 6:e13206302017. View Article : Google Scholar : PubMed/NCBI | |
Wilson EB, El-Jawhari JJ, Neilson AL, Hall GD, Melcher AA, Meade JL and Cook GP: Human tumour immune evasion via TGF-β blocks NK cell activation but not survival allowing therapeutic restoration of Anti-Tumour activity. PLoS One. 6:e228422011. View Article : Google Scholar : PubMed/NCBI | |
Uppendahl LD, Felices M, Bendzick L, Ryan C, Kodal B, Hinderlie P, Boylan KLM, Skubitz APN, Miller JS and Geller MA: Cytokine-induced memory-like natural killer cells have enhanced function, proliferation, and in vivo expansion against ovarian cancer cells. Gynecol Oncol. 153:149–157. 2019. View Article : Google Scholar : PubMed/NCBI | |
Van der Meer JMR, Maas RJA, Guldevall K, Klarenaar K, de Jonge PKJD, Evert JSH, van der Waart AB, Cany J, Safrit JT, Lee JH, et al: IL-15 superagonist N-803 improves IFNγ production and killing of leukemia and ovarian cancer cells by CD34+ progenitor-derived NK cells. Cancer Immunol Immunother. 70:1305–1321. 2021. View Article : Google Scholar : PubMed/NCBI | |
Felices M, Chu S, Kodal B, Bendzick L, Ryan C, Lenvik AJ, Boylan KLM, Wong HC, Skubitz APN, Miller JS and Geller MA: IL-15 super-agonist (ALT-803) enhances natural killer (NK) cell function against ovarian cancer. Gynecol Oncol. 145:453–461. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hoogstad-van Evert JS, Maas RJ, van der Meer J, Cany J, van der Steen S, Jansen JH, Miller JS, Bekkers R, Hobo W, Massuger L and Dolstra H: Peritoneal NK cells are responsive to IL-15 and percentages are correlated with outcome in advanced ovarian cancer patients. Oncotarget. 9:34810–34820. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vallera DA, Ferrone S, Kodal B, Hinderlie P, Bendzick L, Ettestad B, Hallstrom C, Zorko NA, Rao A, Fujioka N, et al: NK-Cell-Mediated targeting of various solid tumors using a B7-H3 Tri-Specific killer Engager in vitro and in vivo. Cancers (Basel). 12:26592020. View Article : Google Scholar : PubMed/NCBI | |
Benencia F, Courrèges MC, Conejo-García JR, Mohamed-Hadley A, Zhang L, Buckanovich RJ, Carroll R, Fraser N and Coukos G: HSV oncolytic therapy upregulates interferon-inducible Chemokines and recruits immune effector cells in ovarian cancer. Mol Ther. 12:789–802. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim JE, Cho HS, Yang HS, Jung DJ, Hong SW, Hung CF, Lee WJ and Kim D: Depletion of ascorbic acid impairs NK cell activity against ovarian cancer in a mouse model. Immunobiology. 217:873–881. 2012. View Article : Google Scholar : PubMed/NCBI | |
Colotta F, Rambaldi A, Colombo N, Tabacchi L, Introna M and Mantovani A: Effect of a streptococcal preparation (OK432) on natural killer activity of tumour-associated lymphoid cells in human ovarian carcinoma and on lysis of fresh ovarian tumour cells. Br J Cancer. 48:515–525. 1983. View Article : Google Scholar : PubMed/NCBI | |
Chuang CM, Monie A, Wu A, Mao CP and Hung CF: Treatment with LL-37 peptide enhances antitumor effects induced by CpG oligodeoxynucleotides against ovarian cancer. Hum Gene Ther. 20:303–313. 2009. View Article : Google Scholar : PubMed/NCBI | |
Choi SH, Kim HJ, Park JD, Ko ES, Lee M, Lee DK, Choi JH, Jang HJ, Kim I, Jung HY, et al: Chemical priming of natural killer cells with branched polyethylenimine for cancer immunotherapy. J Immunother Cancer. 10:e0049642022. View Article : Google Scholar : PubMed/NCBI | |
Chung YM, Khan PP, Wang H, Tsai WB, Qiao Y, Yu B, Larrick JW and Hu MC: Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. J Immunother Cancer. 9:e0027722021. View Article : Google Scholar : PubMed/NCBI | |
Kikuchi Y, Oomori K, Kizawa I and Kato K: Augmented natural killer activity in ovarian cancer patients treated with cimetidine. Eur J Cancer Clin Oncol. 22:1037–1043. 1986. View Article : Google Scholar : PubMed/NCBI | |
Barua A, Bradaric MJ, Bitterman P, Abramowicz JS, Sharma S, Basu S, Lopez H and Bahr JM: Dietary supplementation of Ashwagandha (Withania somnifera, Dunal) enhances NK cell function in ovarian tumors in the laying hen model of spontaneous ovarian cancer. Am J Reprod Immunol. 70:538–550. 2013. View Article : Google Scholar : PubMed/NCBI | |
Neo SY, Siew YY, Yew HC, He Y, Poh KL, Tsai YC, Ng SL, Tan WX, Chong TI, Lim CSE, et al: Effects of Leea indica leaf extracts and its phytoconstituents on natural killer cell-mediated cytotoxicity in human ovarian cancer. BMC Complement Med Ther. 23:792023. View Article : Google Scholar : PubMed/NCBI | |
Yunusova NV, Stakheyeva MN, Molchanov SV, Afanas'ev SG, Tsydenova AA, Kolomiets LA and Cherdyntseva NV: Functional activity of natural killer cells in biological fluids in patients with colorectal and ovarian cancers. Cent Eur J Immunol. 43:26–32. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lutgendorf SK, Sood AK, Anderson B, McGinn S, Maiseri H, Dao M, Sorosky JI, De Geest K, Ritchie J and Lubaroff DM: Social support, psychological distress, and natural killer cell activity in ovarian cancer. J Clin Oncol. 23:7105–7113. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Li Y, Wu Y, Xie S, Ma J, Yue J, Lv R, Tian Z, Fang F and Xiao W: Anti-Tumor activity of expanded PBMC-Derived NK cells by feeder-free protocol in ovarian cancer. Cancers. 13:58662021. View Article : Google Scholar : PubMed/NCBI | |
Nham T, Poznanski SM, Fan IY, Shenouda MM, Chew MV, Lee AJ, Vahedi F, Karimi Y, Butcher M, Lee DA, et al: Ex vivo-expanded NK cells from blood and ascites of ovarian cancer patients are cytotoxic against autologous primary ovarian cancer cells. Cancer Immunol Immunother. 67:575–587. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hermanson DL, Bendzick L, Pribyl L, McCullar V, Vogel RI, Miller JS, Geller MA and Kaufman DS: Induced Pluripotent stem Cell-Derived natural killer cells for treatment of ovarian cancer. Stem Cells. 34:93–101. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheng M, Ma J, Chen Y, Zhang J, Zhao W, Zhang J, Wei H, Ling B, Sun R and Tian Z: Establishment, characterization, and successful adaptive therapy against human tumors of NKG cell, a new human NK cell line. Cell Transplant. 20:1731–1746. 2011. View Article : Google Scholar : PubMed/NCBI | |
Klapdor R, Wang S, Morgan MA, Zimmermann K, Hachenberg J, Büning H, Dörk T, Hillemanns P and Schambach A: NK Cell-Mediated eradication of ovarian cancer cells with a novel chimeric antigen receptor directed against CD44. Biomedicines. 9:13392021. View Article : Google Scholar : PubMed/NCBI | |
Klapdor R, Wang S, Hacker U, Büning H, Morgan M, Dörk T, Hillemanns P and Schambach A: Improved killing of ovarian cancer stem cells by combining a novel chimeric antigen Receptor-Based immunotherapy and chemotherapy. Hum Gene Ther. 28:886–896. 2017. View Article : Google Scholar : PubMed/NCBI | |
Klapdor R, Wang S, Morgan M, Dörk T, Hacker U, Hillemanns P, Büning H and Schambach A: Characterization of a Novel Third-Generation Anti-CD24-CAR against ovarian cancer. Int J Mol Sci. 20:6602019. View Article : Google Scholar : PubMed/NCBI | |
Cao B, Liu M, Wang L, Liang B, Feng Y, Chen X, Shi Y, Zhang J, Ye X, Tian Y, et al: Use of chimeric antigen receptor NK-92 cells to target mesothelin in ovarian cancer. Biochem Biophys Res Commun. 524:96–102. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ao X, Yang Y, Li W, Tan Y, Guo W, Ao L, He X, Wu X, Xia J, Xu X and Guo J: Anti-αFR CAR-engineered NK-92 cells display potent cytotoxicity against αFR-positive ovarian cancer. J Immunother. 42:284–296. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jan CI, Huang SW, Canoll P, Bruce JN, Lin YC, Pan CM, Lu HM, Chiu SC and Cho DY: Targeting human leukocyte antigen G with chimeric antigen receptors of natural killer cells convert immunosuppression to ablate solid tumors. J Immunother Cancer. 9:e0030502021. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hermanson DL, Moriarity BS and Kaufman DS: Human iPSC-Derived natural killer cells engineered with chimeric antigen receptors enhance Anti-tumor activity. Cell Stem Cell. 23:181–192.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ueda T, Kumagai A, Iriguchi S, Yasui Y, Miyasaka T, Nakagoshi K, Nakane K, Saito K, Takahashi M, Sasaki A, et al: Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer Sci. 111:1478–1490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ng YY, Tay JCK and Wang S: CXCR1 Expression to Improve Anti-cancer efficacy of intravenously injected CAR-NK cells in mice with peritoneal xenografts. Mol Ther Oncolytics. 16:75–85. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gubbels JA, Felder M, Horibata S, Belisle JA, Kapur A, Holden H, Petrie S, Migneault M, Rancourt C, Connor JP and Patankar MS: MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Mol Cancer. 9:112010. View Article : Google Scholar : PubMed/NCBI | |
Fraser CC, Jia B, Hu G, Al Johani LI, Fritz-Klaus R, Ham JD, Fichorova RN, Elias KM, Cramer DW, Patankar MS and Chen J: Ovarian Cancer Ascites Inhibits Transcriptional Activation of NK Cells Partly through CA125. J Immunol. 208:2227–2238. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Saga Y, Mizukami H, Sato N, Nonaka H, Fujiwara H, Takei Y, Machida S, Takikawa O, Ozawa K and Suzuki M: Indoleamine-2,3-dioxygenase, an immunosuppressive enzyme that inhibits natural killer cell function, as a useful target for ovarian cancer therapy. Int J Oncol. 40:929–934. 2012. View Article : Google Scholar : PubMed/NCBI | |
Raja R, Wu C, Bassoy EY, Rubino TE Jr, Utagawa EC, Magtibay PM, Butler KA and Curtis M: PP4 inhibition sensitizes ovarian cancer to NK cell-mediated cytotoxicity via STAT1 activation and inflammatory signaling. J Immunother Cancer. 10:e0050262022. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez VD, Huang YW, Delgado-Gonzalez A, Chen SY, Donoso K, Sachs K, Gentles AJ, Allard GM, Kolahi KS, Howitt BE, et al: High-grade serous ovarian tumor cells modulate NK cell function to create an immune-tolerant microenvironment. Cell Rep. 36:1096322021. View Article : Google Scholar : PubMed/NCBI | |
Maas RJ, Hoogstad-van Evert JS, Van der Meer JM, Mekers V, Rezaeifard S, Korman AJ, de Jonge PK, Cany J, Woestenenk R, Schaap NP, et al: TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer. Oncoimmunology. 9:18432472020. View Article : Google Scholar : PubMed/NCBI | |
Cichocki F, Valamehr B, Bjordahl R, Zhang B, Rezner B, Rogers P, Gaidarova S, Moreno S, Tuininga K, Dougherty P, et al: GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity. Cancer Res. 77:5664–5675. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hahne JC, Kurz A, Meyer SR, Dietl J, Engel JB and Honig A: Anti-tumour activity of phosphoinositide-3-kinase antagonist AEZS-126 in models of ovarian cancer. Arch Gynecol Obstet. 291:131–141. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin A, Yan WH, Xu HH, Gan MF, Cai JF, Zhu M and Zhou MY: HLA-G expression in human ovarian carcinoma counteracts NK cell function. Ann Oncol. 18:1804–1809. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chava S, Bugide S, Edwards YJK and Gupta R: Disruptor of telomeric silencing 1-like promotes ovarian cancer tumor growth by stimulating pro-tumorigenic metabolic pathways and blocking apoptosis. Oncogenesis. 10:482021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Liu W, Zhuang D, Hong S and Chen J: Sestrin2 and sestrin3 suppress NK-92 cell-mediated cytotoxic activity on ovarian cancer cells through AMPK and mTORC1 signaling. Oncotarget. 8:90132–90143. 2017. View Article : Google Scholar : PubMed/NCBI | |
Diener C, Keller A and Meese E: Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 38:613–626. 2022. View Article : Google Scholar : PubMed/NCBI | |
Deng M, Wu D, Zhang Y, Jin Z and Miao J: MiR-29c downregulates tumor-expressed B7-H3 to mediate the antitumor NK-cell functions in ovarian cancer. Gynecol Oncol. 162:190–199. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Sun H and Zhu W: MiR-92 overexpression suppresses immune cell function in ovarian cancer via LATS2/YAP1/PD-L1 pathway. Clin Transl Oncol. 23:450–458. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhu M, Zhou X, Wang T, Xi Y, Jing Z and Xi W: MiR-140-3p inhibits natural killer cytotoxicity to human ovarian cancer via targeting MAPK1. J Biosci. 45:662020. View Article : Google Scholar : PubMed/NCBI | |
Dou J, Wang Y, Wang J, Zhao F, Li Y, Cao M, Hu W, Hu K, He XF, Chu L, et al: Antitumor efficacy induced by human ovarian cancer cells secreting IL-21 alone or combination with GM-CSF cytokines in nude mice model. Immunobiology. 214:483–492. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yeung TL, Tsai CC, Leung CS, Au Yeung CL, Thompson MS, Lu KH, Freedman RS, Birrer MJ, Wong KK, Mok SC, et al: ISG15 Promotes ERK1 ISGylation, CD8+ T cell activation and suppresses ovarian cancer progression. Cancers (Basel). 10:4642018. View Article : Google Scholar : PubMed/NCBI | |
Labani-Motlagh A, Israelsson P, Ottander U, Lundin E, Nagaev I, Nagaeva O, Dehlin E, Baranov V and Mincheva-Nilsson L: Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol. 37:5455–5466. 2016. View Article : Google Scholar : PubMed/NCBI | |
Koh J, Lee SB, Park H, Lee HJ, Cho NH and Kim J: Susceptibility of CD24(+) ovarian cancer cells to anti-cancer drugs and natural killer cells. Biochem Biophys Res Commun. 427:373–378. 2012. View Article : Google Scholar : PubMed/NCBI | |
Leung EYL, Ennis DP, Kennedy PR, Hansell C, Dowson S, Farquharson M, Spiliopoulou P, Nautiyal J, McNamara S, Carlin LM, et al: NK cells augment oncolytic adenovirus cytotoxicity in ovarian cancer. Mol Ther Oncolytics. 16:289–301. 2020. View Article : Google Scholar : PubMed/NCBI | |
van Vloten JP, Matuszewska K, Minow MAA, Minott JA, Santry LA, Pereira M, Stegelmeier AA, McAusland TM, Klafuric EM, Karimi K, et al: Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer. J Immunother Cancer. 10:e0043352022. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Blum RH, Bjordahl R, Gaidarova S, Rogers P, Lee TT, Abujarour R, Bonello GB, Wu J, Tsai PF, et al: Pluripotent stem cell-derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood. 135:399–410. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mallmann-Gottschalk N, Sax Y, Kimmig R, Lang S and Brandau S: EGFR-Specific tyrosine kinase inhibitor modifies NK Cell-Mediated antitumoral activity against ovarian cancer cells. Int J Mol Sci. 20:46932019. View Article : Google Scholar : PubMed/NCBI | |
Gottschalk N, Kimmig R, Lang S, Singh M and Brandau S: Anti-epidermal growth factor receptor (EGFR) antibodies overcome resistance of ovarian cancer cells to targeted therapy and natural cytotoxicity. Int J Mol Sci. 13:12000–12016. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oyer JL, Gitto SB, Altomare DA and Copik AJ: PD-L1 blockade enhances anti-tumor efficacy of NK cells. Oncoimmunology. 7:e15098192018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Cheng Z, Zhu H, Feng D, Zhao W, Ling B, Wei H and Tian Z: Stable suppression of HER-2 gene expression using siRNA increases the lysis of human ovarian carcinoma cells mediated by NK-92 cell line. Oncol Rep. 20:1425–1431. 2008.PubMed/NCBI | |
Van der Meer JMR, de Jonge P, van der Waart AB, Geerlings AC, Moonen JP, Brummelman J, de Klein J, Vermeulen MC, Maas RJA, Schaap NPM, et al: CD34+ progenitor-derived NK cell and gemcitabine combination therapy increases killing of ovarian cancer cells in NOD/SCID/IL2Rgnull mice. Oncoimmunology. 10:19810492021. View Article : Google Scholar : PubMed/NCBI | |
Siew YY, Neo SY, Yew HC, Lim SW, Ng YC, Lew SM, Seetoh WG, Seow SV and Koh HL: Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity. Int Immunol. 27:621–632. 2015. View Article : Google Scholar : PubMed/NCBI | |
Choi SH, Jung D, Kim KY, An HJ and Park KS: Combined use of cisplatin plus natural killer cells overcomes immunoresistance of cisplatin resistant ovarian cancer. Biochem Biophys Res Commun. 563:40–46. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li G, Nikkhoi SK and Hatefi A: Stem cell-assisted enzyme/prodrug therapy makes drug-resistant ovarian cancer cells vulnerable to natural killer cells through upregulation of NKG2D ligands. Med Oncol. 40:1102023. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Duan L, Lu J and Xia J: Engineering exosomes for targeted drug delivery. Theranostics. 11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Zhou Y, Zhang J, Zhang Y, Long S, Lin X, Yang A, Duan J, Yang N, Yang Z, et al: NK cell-derived exosomes enhance the anti-tumor effects against ovarian cancer by delivering cisplatin and reactivating NK cell functions. Front Immunol. 13:10876892022. View Article : Google Scholar : PubMed/NCBI | |
Yoon H, Kim A and Jang H: Immunotherapeutic approaches in ovarian cancer. Curr Issues Mol Biol. 45:1233–1249. 2023. View Article : Google Scholar : PubMed/NCBI |