Inhibition of FSP1: A new strategy for the treatment of tumors (Review)
- Authors:
- Qiangfang Dai
- Xiaoli Wei
- Jumei Zhao
- Die Zhang
- Yidan Luo
- Yue Yang
- Yang Xiang
- Xiaolong Liu
-
Affiliations: School of Medicine, Yan'an University, Yan'an, Shaanxi 716000, P.R. China - Published online on: June 27, 2024 https://doi.org/10.3892/or.2024.8764
- Article Number: 105
-
Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Hwang N, Seok BG, Lee S, Lee SJ and Chung SW: Autophagy mediates an amplification loop during ferroptosis. Cell Death Dis. 14:4642023. View Article : Google Scholar : PubMed/NCBI | |
Kinowaki Y, Taguchi T, Onishi I, Kirimura S, Kitagawa M and Yamamoto K: Overview of ferroptosis and synthetic lethality strategies. Int J Mol Sci. 22:92712021. View Article : Google Scholar : PubMed/NCBI | |
Alborzinia H, Chen Z, Yildiz U, Freitas FP, Vogel FCE, Varga JP, Batani J, Bartenhagen C, Schmitz W, Büchel G, et al: LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol Med. 15:e180142023. View Article : Google Scholar : PubMed/NCBI | |
Floros KV, Cai J, Jacob S, Kurupi R, Fairchild CK, Shende M, Coon CM, Powell KM, Belvin BR, Hu B, et al: MYCN-amplified neuroblastoma is addicted to iron and vulnerable to inhibition of the system Xc-/glutathione axis. Cancer Res. 81:1896–7908. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Yang Q, Su Y, Ji Y, Li G, Yang X, Xu L, Lu Z, Dong J, Wu Y, et al: MYCN mediates TFRC-dependent ferroptosis and reveals vulnerabilities in neuroblastoma. Cell Death Dis. 12:5112021. View Article : Google Scholar : PubMed/NCBI | |
Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
Labrie M, Brugge JS, Mills GB and Zervantonakis IK: Therapy resistance: Opportunities created by adaptive responses to targeted therapies in cancer. Nat Rev Cancer. 22:323–339. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cai Y, Lv L, Lu T, Ding M, Yu Z, Chen X, Zhou X and Wang X: α-KG inhibits tumor growth of diffuse large B-cell lymphoma by inducing ROS and TP53-mediated ferroptosis. Cell Death Discov. 9:1822023. View Article : Google Scholar : PubMed/NCBI | |
Zhu X and Li S: Ferroptosis, necroptosis, and pyroptosis in gastrointestinal cancers: The chief culprits of tumor progression and drug resistance. Adv Sci (Weinh). 10:e23008242023. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Jin H, Dong M, Tian J, Li H, Liu Q, Chen Y and Zou Z: Identification of ferroptosis-related signature with potential implications in prognosis and immunotherapy of renal cell carcinoma. Apoptosis. 27:946–960. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Jiang B, Liu Y, Xu L and Wan M: Bufotalin induces ferroptosis in non-small cell lung cancer cells by facilitating the ubiquitination and degradation of GPX4. Free Radic Biol Med. 180:75–84. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Niu Y, Jian J, Guo Y, Wang Y, Zhu Y and Liu B: Potential applications of ferroptosis inducers and regulatory molecules in hematological malignancy therapy. Crit Rev Oncol Hematol. 193:1042032024. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Hobeika CS, Khabibullin D, Yu D, Filippakis H, Alchoueiry M, Tang Y, Lam HC, Tsvetkov P, Georgiou G, et al: Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc Natl Acad Sci USA. 119:e21228401192022. View Article : Google Scholar : PubMed/NCBI | |
Alborzinia H, Flórez AF, Kreth S, Brückner LM, Yildiz U, Gartlgruber M, Odoni DI, Poschet G, Garbowicz K, Shao C, et al: MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. Nat Cancer. 3:471–485. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liang L, Liu S, Yi H and Zhou Y: FSP1: A key regulator of ferroptosis. Trends Mol Med. 29:753–764. 2023. View Article : Google Scholar : PubMed/NCBI | |
Emmanuel N, Li H, Chen J and Zhang Y: FSP1, a novel KEAP1/NRF2 target gene regulating ferroptosis and radioresistance in lung cancers. Oncotarget. 13:1136–1139. 2022. View Article : Google Scholar : PubMed/NCBI | |
He X, Liang SM, Wang HQ, Tao L, Sun FF, Wang Y, Zhang C, Huang YC, Xu DX and Chen X: Mitoquinone protects against acetaminophen-induced liver injury in an FSP1-dependent and GPX4-independent manner. Toxicol Appl Pharmacol. 465:1164522023. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhang Z, Ruan S, Yan Q, Chen Y, Cui J, Wang X, Huang S and Hou B: Regulation of iron metabolism and ferroptosis in cancer stem cells. Front Oncol. 13:12515612023. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ and Pratt DA: Ferroptosis: A flexible constellation of related biochemical mechanisms. Mol Cell. 83:1030–1042. 2023. View Article : Google Scholar : PubMed/NCBI | |
Guo R, Duan J, Pan S, Cheng F, Qiao Y, Feng Q, Liu D and Liu Z: The road from AKI to CKD: Molecular mechanisms and therapeutic targets of ferroptosis. Cell Death Dis. 14:4262023. View Article : Google Scholar : PubMed/NCBI | |
Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM, et al: Transferrin receptor is a specific ferroptosis marker. Cell Rep. 30:3411–3423.e7. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Wang C, Liu Z, He X, Tang W, He L, Feng Y, Liu D, Yin Y and Li T: Ferroptosis and Its multifaceted role in cancer: Mechanisms and therapeutic approach. Antioxidants (Basel). 11:15042022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Sun T, Yu F, Liu W, Gao J, Chen J, Zheng H, Liu J, Miao C, Guo H, et al: PAFAH2 suppresses synchronized ferroptosis to ameliorate acute kidney injury. Nat Chem Biol. Jan 29–2024.(Epub ahead of print). | |
Wang D, Tang L, Zhang Y, Ge G, Jiang X, Mo Y, Wu P, Deng X, Li L, Zuo S, et al: Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis. 13:5442022. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Li S and Ge G: Apatinib promotes ferroptosis in colorectal cancer cells by targeting ELOVL6/ACSL4 signaling. Cancer Manag Res. 13:1333–1342. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, Shao W, Lv L, Chai L, Qu L, et al: Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 29:2190–2202. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Chen A, Li L, Liang Q, Wang S, Dong Q, Fu M, Lan Z, Li Y, Liu X, et al: Repression of the antiporter SLC7A11/glutathione/glutathione peroxidase 4 axis drives ferroptosis of vascular smooth muscle cells to facilitate vascular calcification. Kidney Int. 102:1259–1275. 2022. View Article : Google Scholar : PubMed/NCBI | |
Krümmel B, Plötz T, Jörns A, Lenzen S and Mehmeti I: The central role of glutathione peroxidase 4 in the regulation of ferroptosis and its implications for pro-inflammatory cytokine-mediated beta-cell death. Biochim Biophys Acta Mol Basis Dis. 1867:1661142021. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Zhang HL, Li J, Ye ZP, Du T, Li LC, Guo YQ, Yang D, Li ZL, Cao JH, et al: Tubastatin A potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis. Redox Biol. 62:1026772023. View Article : Google Scholar : PubMed/NCBI | |
Nishida Xavier da Silva T, Friedmann Angeli JP and Ingold I: GPX4: Old lessons, new features. Biochem Soc Trans. 50:1205–1213. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Leng J, Tan J, Zhao Y, Xie S, Zhao S, Yan X, Zhu L, Luo J, Kong L and Yin Y: Discovery of novel potent covalent glutathione peroxidase 4 inhibitors as highly selective ferroptosis inducers for the treatment of triple-negative breast cancer. J Med Chem. 66:10036–10059. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li D, Zhang M and Chao H: Significance of glutathione peroxidase 4 and intracellular iron level in ovarian cancer cells-‘utilization’ of ferroptosis mechanism. Inflamm Res. 70:1177–1189. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y and Vergely C: Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci. 24:4492022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Swanda RV, Nie L, Liu X, Wang C, Lee H, Lei G, Mao C, Koppula P, Cheng W, et al: mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun. 12:15892021. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Shi Z, Sun Y, Ning H, Gu X and Zhang L: Prospects for anti-tumor mechanism and potential clinical application based on glutathione peroxidase 4 mediated ferroptosis. Int J Mol Sci. 24:16072023. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Zhao J, Li R, Liu Y, Zhou L, Wang C, Lv C, Gao L and Cui D: CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. J Exp Clin Cancer Res. 41:3072022. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Wei W, Wu D, Huang F, Li M, Li W, Yin J, Peng Y, Lu Y, Zhao Q and Liu L: Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis. Front Cell Dev Biol. 10:8103272022. View Article : Google Scholar : PubMed/NCBI | |
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA and Birsoy K: Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 16:1351–1360. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lv Y, Wu M, Wang Z and Wang J: Ferroptosis: From regulation of lipid peroxidation to the treatment of diseases. Cell Biol Toxicol. 39:827–851. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Kang L, Dai X, Chen J, Chen Z, Wang M, Jiang H, Wang X, Bu S, Liu X, et al: Manganese induces tumor cell ferroptosis through type-I IFN dependent inhibition of mitochondrial dihydroorotate dehydrogenase. Free Radic Biol Med. 193:202–212. 2022. View Article : Google Scholar : PubMed/NCBI | |
Amos A, Amos A, Wu L and Xia H: The Warburg effect modulates DHODH role in ferroptosis: A review. Cell Commun Signal. 21:1002023. View Article : Google Scholar : PubMed/NCBI | |
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang F and Min J: DHODH tangoing with GPX4 on the ferroptotic stage. Signal Transduct Target Ther. 6:2442021. View Article : Google Scholar : PubMed/NCBI | |
Desler C, Durhuus JA, Hansen TL, Anugula S, Zelander NT, Bøggild S and Rasmussen LJ: Partial inhibition of mitochondrial-linked pyrimidine synthesis increases tumorigenic potential and lysosome accumulation. Mitochondrion. 64:73–81. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tarangelo A, Rodencal J, Kim JT, Magtanong L, Long JZ and Dixon SJ: Nucleotide biosynthesis links glutathione metabolism to ferroptosis sensitivity. Life Sci Alliance. 5:e2021011572022. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Zhao Y, Wang L, Guo Z, Ma L, Yang R, Wu Y, Li X, Niu J, Chu Q, et al: De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence. Nat Cell Biol. 25:836–847. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lu S, Wu LL, Yang L, Yang L and Wang J: The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis. 14:5192023. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR and Jiang X: Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell. 186:2748–2764.e22. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Shen J, Jiang J, Wang F and Min J: Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 8:3722023. View Article : Google Scholar : PubMed/NCBI | |
Zeng F, Chen X and Deng G: The anti-ferroptotic role of FSP1: Current molecular mechanism and therapeutic approach. Mol Biomed. 3:372022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wu X, Ren Z, Li Y, Zou W, Chen J and Wang H: Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat. 66:1009162023. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Wang W, Abdul Razak SR, Han T, Ahmad NH and Li X: Ferroptosis as a potential target for cancer therapy. Cell Death Dis. 14:4602023. View Article : Google Scholar : PubMed/NCBI | |
Novo N, Ferreira P and Medina M: The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life. 73:568–581. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng J and Conrad M: The metabolic underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HP, Yi D, Lin F, Viscarra JA, Tabuchi C, Ngo K, Shin G, Lee AY, Wang Y and Sul HS: Aifm2, a NADH oxidase, supports robust glycolysis and is required for cold- and diet-induced thermogenesis. Mol Cell. 77:600–617.e4. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mishima E, Ito J, Wu Z, Nakamura T, Wahida A, Doll S, Tonnus W, Nepachalovich P, Eggenhofer E, Aldrovandi M, et al: A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature. 608:778–783. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hadian K: Ferroptosis suppressor protein 1 (FSP1) and coenzyme Q10 cooperatively suppress ferroptosis. Biochemistry. 59:637–638. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Roh JL: Unleashing ferroptosis in human cancers: Targeting ferroptosis suppressor protein 1 for overcoming therapy resistance. Antioxidants (Basel). 12:12182023. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Lv T, Yang J, Wu Z, Yan L, Yang J and Shi Y: HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma. Redox Biol. 58:1025462022. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Gou S, Zhang Q, Yong X, Gan B and Jia D: FSP1 oxidizes NADPH to suppress ferroptosis. Cell Res. 33:967–970. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lv Y, Liang C, Sun Q, Zhu J, Xu H, Li X, Li YY, Wang Q, Yuan H, Chu B and Zhu D: Structural insights into FSP1 catalysis and ferroptosis inhibition. Nat Commun. 14:59332023. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Chen L and Ma M: Ginsenoside Rg1 suppresses ferroptosis of renal tubular epithelial cells in sepsis-induced acute kidney injury via the FSP1-CoQ10-NAD(P)H pathway. Curr Med Chem. 31:2119–2132. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Tsui MG, Tsang JKW, Goit RK, Yao KM, So KF, Lam WC and Lo ACY: Involvement of FSP1-CoQ(10)-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis. Cell Death Dis. 13:4682022. View Article : Google Scholar : PubMed/NCBI | |
Santoro MM: The antioxidant role of non-mitochondrial CoQ10:. Mystery solved! Cell Metab. 31:13–15. 2020. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Lei G, Zhang Y, Yan Y, Mao C, Kondiparthi L, Shi J, Liu X, Horbath A, Das M, et al: A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat Commun. 13:22062022. View Article : Google Scholar : PubMed/NCBI | |
Shen G, Li C, Cao Q, Megta AK, Li S, Gao M, Liu H, Shen Y, Chen Y, Yu H, et al: Structural features determining the vitamin K epoxide reduction activity in the VKOR family of membrane oxidoreductases. FEBS J. 289:4564–4579. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mladěnka P, Macáková K, Kujovská Krčmová L, Javorská L, Mrštná K, Carazo A, Protti M, Remião F and Nováková L; OEMONOM researchers collaborators, : Vitamin K-sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev. 80:677–698. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jin DY, Chen X, Liu Y, Williams CM, Pedersen LC, Stafford DW and Tie JK: A genome-wide CRISPR-Cas9 knockout screen identifies FSP1 as the warfarin-resistant vitamin K reductase. Nat Commun. 14:8282023. View Article : Google Scholar : PubMed/NCBI | |
Mishima E, Wahida A, Seibt T and Conrad M: Diverse biological functions of vitamin K: From coagulation to ferroptosis. Nat Metab. 5:924–932. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ward NP and DeNicola GM: Long-sought mediator of vitamin K recycling discovered. Nature. 608:673–674. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pfitzner AK, Mercier V, Jiang X, Moser von Filseck J, Baum B, Šarić A and Roux A: An ESCRT-III polymerization sequence drives membrane deformation and fission. Cell. 182:1140–1155.e18. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Kang R and Tang D: ESCRT-III-mediated membrane repair in cell death and tumor resistance. Cancer Gene Ther. 28:1–4. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dai E, Meng L, Kang R, Wang X and Tang D: ESCRT-III-dependent membrane repair blocks ferroptosis. Biochem Biophys Res Commun. 522:415–421. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shakya A, McKee NW, Dodson M, Chapman E and Zhang DD: Anti-ferroptotic effects of Nrf2: Beyond the antioxidant response. Mol Cells. 46:165–175. 2023. View Article : Google Scholar : PubMed/NCBI | |
Anandhan A, Dodson M, Shakya A, Chen J, Liu P, Wei Y, Tan H, Wang Q, Jiang Z, Yang K, et al: NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci Adv. 9:eade95852023. View Article : Google Scholar : PubMed/NCBI | |
He F, Ru X and Wen T: NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 21:47772020. View Article : Google Scholar : PubMed/NCBI | |
Müller F, Lim JKM, Bebber CM, Seidel E, Tishina S, Dahlhaus A, Stroh J, Beck J, Yapici FI, Nakayama K, et al: Elevated FSP1 protects KRAS-mutated cells from ferroptosis during tumor initiation. Cell Death Differ. 30:442–456. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Cai Q, Yang R, Wang H, Ling H, Li T, Liu N, Wang Z, Sun J, Tao T, et al: GINS4 suppresses ferroptosis by antagonizing p53 acetylation with Snail. Proc Natl Acad Sci USA. 120:e22195851202023. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Wang Q, Zhou Y, Zhang D, Geng Y, Hu W, Wu C, Shi Y and Jiang J: N-acetyltransferase 10 promotes colon cancer progression by inhibiting ferroptosis through N4-acetylation and stabilization of ferroptosis suppressor protein 1 (FSP1) mRNA. Cancer Commun (Lond). 42:1347–1366. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Ma T and Yu B: Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther. 8:692023. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Zhu S, Wang P, Wang J, Huang J, Wang T, Guo L, Liang D, Meng Q and Pan H: Regulators of epigenetic change in ferroptosis-associated cancer (review). Oncol Rep. 48:2152022. View Article : Google Scholar : PubMed/NCBI | |
Hao M, Jiang Y, Zhang Y, Yang X and Han J: Ferroptosis regulation by methylation in cancer. Biochim Biophys Acta Rev Cancer. 1878:1889722023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J and Wang H: Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther. 8:4492023. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S and Weng J: Targeting protein modifications in metabolic diseases: Molecular mechanisms and targeted therapies. Signal Transduct Target Ther. 8:2202023. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Roh JL: Epigenetic modulation of ferroptosis in cancer: Identifying epigenetic targets for novel anticancer therapy. Cell Oncol (Dordr). 46:1605–1623. 2023. View Article : Google Scholar : PubMed/NCBI | |
Widagdo J, Anggono V and Wong JJL: The multifaceted effects of YTHDC1-mediated nuclear m6A recognition. Trends Genet. 38:325–332. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Xi S, Weng H, Guo MM, Zhang JH, Yu ZP, Zhang H, Yu Z, Xing Z, Liu MY, et al: YTHDC1 as a tumor progression suppressor through modulating FSP1-dependent ferroptosis suppression in lung cancer. Cell Death Differ. 30:2477–2490. 2023. View Article : Google Scholar : PubMed/NCBI | |
Brewer G: FSP1 in cancer: Not just a phase. Nat Rev Cancer. 23:5782023. View Article : Google Scholar | |
Zhang Q, Li N, Deng L, Jiang X, Zhang Y, Lee LTO and Zhang H: ACSL1-induced ferroptosis and platinum resistance in ovarian cancer by increasing FSP1 N-myristylation and stability. Cell Death Discov. 9:832023. View Article : Google Scholar : PubMed/NCBI | |
Liu MR, Shi C, Song QY, Kang MJ, Jiang X, Liu H and Pei DS: Sorafenib induces ferroptosis by promoting TRIM54-mediated FSP1 ubiquitination and degradation in hepatocellular carcinoma. Hepatol Commun. 7:e02462023. View Article : Google Scholar : PubMed/NCBI | |
Gotorbe C, Durivault J, Meira W, Cassim S, Ždralević M, Pouysségur J and Vučetić M: Metabolic rewiring toward oxidative phosphorylation disrupts intrinsic resistance to ferroptosis of the colon adenocarcinoma cells. Antioxidants (Basel). 11:24122022. View Article : Google Scholar : PubMed/NCBI | |
Pontel LB, Bueno-Costa A, Morellato AE, Carvalho Santos J, Roué G and Esteller M: Acute lymphoblastic leukemia necessitates GSH-dependent ferroptosis defenses to overcome FSP1-epigenetic silencing. Redox Biol. 55:1024082022. View Article : Google Scholar : PubMed/NCBI | |
Yoshioka H, Kawamura T, Muroi M, Kondoh Y, Honda K, Kawatani M, Aono H, Waldmann H, Watanabe N and Osada H: Identification of a Small molecule that enhances ferroptosis via inhibition of ferroptosis suppressor protein 1 (FSP1). ACS Chem Biol. 17:483–491. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cheu JW, Lee D, Li Q, Goh CC, Bao MH, Yuen VW, Zhang MS, Yang C, Chan CY, Tse AP, et al: Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer. Cell Mol Gastroenterol Hepatol. 16:133–159. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xavier da Silva TN, Schulte C, Alves AN, Maric HM and Friedmann Angeli JP: Molecular characterization of AIFM2/FSP1 inhibition by iFSP1-like molecules. Cell Death Dis. 14:2812023. View Article : Google Scholar : PubMed/NCBI | |
Hendricks JM, Doubravsky CE, Wehri E, Li Z, Roberts MA, Deol KK, Lange M, Lasheras-Otero I, Momper JD, Dixon SJ, et al: Identification of structurally diverse FSP1 inhibitors that sensitize cancer cells to ferroptosis. Cell Chem Biol. 30:1090–1103.e7. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xavier da Silva TN and Friedmann Angeli JP: Sabotaging the breaks: FSEN1 expands the toolbox of FSP1 inhibitors. Cell Chem Biol. 30:1006–1008. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, et al: Phase separation of FSP1 promotes ferroptosis. Nature. 619:371–377. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Mishima E, Yamada N, Mourão ASD, Trümbach D, Doll S, Wanninger J, Lytton E, Sennhenn P, Nishida Xavier da Silva T, et al: Integrated chemical and genetic screens unveil FSP1 mechanisms of ferroptosis regulation. Nat Struct Mol Biol. 30:1806–1815. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tang W, Chen Z, Zhang W, Cheng Y, Zhang B, Wu F, Wang Q, Wang S, Rong D, Reiter FP, et al: The mechanisms of sorafenib resistance in hepatocellular carcinoma: Theoretical basis and therapeutic aspects. Signal Transduct Target Ther. 5:872020. View Article : Google Scholar : PubMed/NCBI | |
Lai YL, Wang KH, Hsieh HP and Yen WC: Novel FLT3/AURK multikinase inhibitor is efficacious against sorafenib-refractory and sorafenib-resistant hepatocellular carcinoma. J Biomed Sci. 29:52022. View Article : Google Scholar : PubMed/NCBI | |
Mishima E, Nakamura T, Zheng J, Zhang W, Mourão ASD, Sennhenn P and Conrad M: DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature. 619:E9–E18. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhang J, Wang J, Ren C, Tang P, Ouyang L and Wang Y: Recent advances of human dihydroorotate dehydrogenase inhibitors for cancer therapy: Current development and future perspectives. Eur J Med Chem. 232:1141762022. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Zhang L, Yan J, Hou A, Sui W and Sun M: Curcumin induces ferroptosis in A549 CD133+ cells through the GSH-GPX4 and FSP1-CoQ10-NAPH pathways. Discov Med. 35:251–263. 2023. View Article : Google Scholar : PubMed/NCBI | |
Miyazaki K, Xu C, Shimada M and Goel A: Curcumin and andrographis exhibit anti-tumor effects in colorectal cancer via activation of ferroptosis and dual suppression of glutathione peroxidase-4 and ferroptosis suppressor protein-1. Pharmaceuticals (Basel). 16:3832023. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Jia Z, Zhang J, Pan X, Wei Y, Ma S, Yang N, Liu Z and Shen Q: Metabolic intervention nanoparticles for triple-negative breast cancer therapy via overcoming FSP1-mediated ferroptosis resistance. Adv Healthc Mater. 11:e21027992022. View Article : Google Scholar : PubMed/NCBI | |
Li K, Lin C, Li M, Xu K, He Y, Mao Y, Lu L, Geng W, Li X, Luo Z and Cai K: Multienzyme-like reactivity cooperatively impairs glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways in triple-negative breast cancer for sensitized ferroptosis therapy. ACS Nano. 16:2381–2398. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Xing J, Akakuru OU, Luo L, Sun S, Zou R, Yu Z, Fang Q and Wu A: Nanozymes-engineered metal-organic frameworks for catalytic cascades-enhanced synergistic cancer therapy. Nano Lett. 19:5674–5682. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Xu H, Xu C, Tong Z, Zhang S, Bai Y, Chen Y, Xu Q, Zhou L, Ding H, et al: A nanomedicine fabricated from gold nanoparticles-decorated metal-organic framework for cascade chemo/chemodynamic cancer therapy. Adv Sci (Weinh). 7:20010602020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Chen K, Lin WK, Liu J, Kang W, Zhang Y, Yang R, Jin L, Cheng Y, Xu A and Wang W: Photo-enhanced synergistic induction of ferroptosis for anti-cancer immunotherapy. Adv Healthc Mater. 12:e23009942023. View Article : Google Scholar : PubMed/NCBI |