Progress of research on γδ T cells in colorectal cancer (Review)
- Authors:
- Lijuan Pan
- Yiru Zhou
- Yeye Kuang
- Chan Wang
- Weimin Wang
- Xiaotong Hu
- Xiabin Chen
-
Affiliations: School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P.R. China, Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China - Published online on: October 4, 2024 https://doi.org/10.3892/or.2024.8819
- Article Number: 160
-
Copyright: © Pan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Golshani G and Zhang Y: Advances in immunotherapy for colorectal cancer: A review. Therap Adv Gastroenterol. 13:17562848209175272020. View Article : Google Scholar : PubMed/NCBI | |
Morazan-Fernandez D, Mora J and Molina-Mora JA: In Silico pipeline to identify Tumor-specific antigens for cancer immunotherapy using exome sequencing data. Phenomics. 3:130–137. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Li T, Jiang R, Yang X, Guo H and Yang R: Targeting MHC-I molecules for cancer: Function, mechanism, and therapeutic prospects. Mol Cancer. 22:1942023. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues NV, Correia DV, Mensurado S, Nobrega-Pereira S, deBarros A, Kyle-Cezar F, Tutt A, Hayday AC, Norell H, Silva-Santos B and Dias S: Low-Density lipoprotein uptake inhibits the activation and antitumor functions of human Vgamma9Vdelta2 T cells. Cancer Immunol Res. 6:448–457. 2018. View Article : Google Scholar : PubMed/NCBI | |
Suzuki T, Hayman L, Kilbey A, Edwards J and Coffelt SB: Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev. 298:198–217. 2020. View Article : Google Scholar : PubMed/NCBI | |
Todaro M, Orlando V, Cicero G, Caccamo N, Meraviglia S, Stassi G and Dieli F: Chemotherapy sensitizes colon cancer initiating cells to Vγ9Vδ2 T Cell-mediated cytotoxicity. PLoS One. 8:e651452013. View Article : Google Scholar : PubMed/NCBI | |
Lo Presti E, Pizzolato G, Gulotta E, Cocorullo G, Gulotta G, Dieli F and Meraviglia S: Current advances in γδ T Cell-based tumor immunotherapy. Front Immunol. 8:14012017. View Article : Google Scholar : PubMed/NCBI | |
Arias-Badia M, Chang R and Fong L: γδ T cells as critical Anti-tumor immune effectors. Nat Cancer. 5:1145–1157. 2024. View Article : Google Scholar : PubMed/NCBI | |
de Vries NL, van de Haar J, Veninga V, Chalabi M, Ijsselsteijn ME, van der Ploeg M, van den Bulk J, Ruano D, van den Berg JG, Haanen JB, et al: γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature. 613:743–750. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Ma Y, Wang M, Shen J, Wu H, Li J, Gao N, Gu Y, Zhang X, Zhang G, et al: B7-H3 confers resistance to Vγ9Vδ2 T cell-mediated cytotoxicity in human colon cancer cells via the STAT3/ULBP2 axis. Cancer Immunol Immunother. 70:1213–1226. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lo Presti E, Pizzolato G, Corsale AM, Caccamo N, Sireci G, Dieli F and Meraviglia S: γδ T cells and tumor microenvironment: From immunosurveillance to tumor evasion. Front Immunol. 9:13952018. View Article : Google Scholar : PubMed/NCBI | |
Lin P, Yan Y, Zhang Z, Dong Q, Yi J, Li Q, Zhang A and Kong X: The γδ T cells dual function and crosstalk with intestinal flora in treating colorectal cancer is a promising area of study. Int Immunopharmacol. 123:1107332023. View Article : Google Scholar : PubMed/NCBI | |
Zhu LQ, Zhang L, Zhang J, Chang GL, Liu G, Yu DD, Yu XM, Zhao MS and Ye B: Evodiamine inhibits high-fat Diet-induced Colitis-associated cancer in mice through regulating the gut microbiota. J Integr Med. 19:56–65. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rong L, Li K, Li R, Liu HM, Sun R and Liu XY: Analysis of tumor-infiltrating gamma delta T cells in rectal cancer. World J Gastroenterol. 22:3573–3580. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ma R, Yuan D, Guo Y, Yan R and Li K: Immune effects of γδ T cells in colorectal cancer: A review. Front Immunol. 11:16002020. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Wu P, Wu X, Ye J, Wang Z, Zhao S, Ni C, Hu G, Xu J, Han Y, et al: Ex vivo expanded human circulating Vδ1 γδT cells exhibit favorable therapeutic potential for colon cancer. Oncoimmunology. 4:e9927492015. View Article : Google Scholar : PubMed/NCBI | |
Mikulak J, Oriolo F, Bruni E, Roberto A, Colombo FS, Villa A, Bosticardo M, Bortolomai I, Lo Presti E, Meraviglia S, et al: NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. JCI Insight. 4:e1258842019. View Article : Google Scholar : PubMed/NCBI | |
Bruni E, Cimino MM, Donadon M, Carriero R, Terzoli S, Piazza R, Ravens S, Prinz I, Cazzetta V, Marzano P, et al: Intrahepatic CD69+Vδ1 T cells re-circulate in the blood of patients with metastatic colorectal cancer and limit tumor progressionn. J Immunother Cancer. 10:e0045792022. View Article : Google Scholar : PubMed/NCBI | |
Devaud C, Rousseau B, Netzer S, Pitard V, Paroissin C, Khairallah C, Costet P, Moreau JF, Couillaud F, Dechanet-Merville J and Capone M: Anti-metastatic potential of human Vδ1(+) γδ T cells in an orthotopic mouse xenograft model of colon carcinoma. Cancer Immunol Immunother. 62:1199–1210. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bernard NJ: Expanding Vδ1 T cells. Nat Immunol. 24:13962023. View Article : Google Scholar : PubMed/NCBI | |
Lo Presti E, Mocciaro F, Mitri RD, Corsale AM, Di Simone M, Vieni S, Scibetta N, Unti E, Dieli F and Meraviglia S: Analysis of colon-infiltrating γδ T cells in chronic inflammatory bowel disease and in colitis-associated cancer. J Leukoc Biol. 108:749–760. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bouet-Toussaint F, Cabillic F, Toutirais O, Le Gallo M, Thomas de la Pintiere C, Daniel P, Genetet N, Meunier B, Dupont-Bierre E, Boudjema K, et al: Vgamma9Vdelta2 T cell-mediated recognition of human solid tumors. Potential for immunotherapy of hepatocellular and colorectal carcinomas. Cancer Immunol Immunother. 57:531–539. 2008. View Article : Google Scholar : PubMed/NCBI | |
Iovino F, Meraviglia S, Spina M, Orlando V, Saladino V, Dieli F, Stassi G and Todaro M: Immunotherapy targeting colon cancer stem cells. Immunotherapy. 3:97–106. 2011. View Article : Google Scholar : PubMed/NCBI | |
Adams EJ, Strop P, Shin S, Chien YH and Garcia KC: An autonomous CDR3delta is sufficient for recognition of the nonclassical MHC class I molecules T10 and T22 by gammadelta T cells. Nat Immunol. 9:777–784. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Xi X, Cui L and He W: CDR3δ-grafted γ9δ2T cells mediate effective antitumor reactivity. Cell Mol Immunol. 9:147–154. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vyborova A, Janssen A, Gatti L, Karaiskaki F, Yonika A, van Dooremalen S, Sanders J, Beringer DX, Straetemans T, Sebestyen Z and Kuball J: γ9δ2 T-Cell expansion and phenotypic profile are reflected in the CDR3δ repertoire of healthy adults. Front Immunol. 13:9153662022. View Article : Google Scholar : PubMed/NCBI | |
Silva-Santos B and Strid J: Working in ‘NK Mode’: Natural Killer Group 2 Member D and natural cytotoxicity receptors in Stress-surveillance by γδ T cells. Front Immunol. 9:8512018. View Article : Google Scholar : PubMed/NCBI | |
Kong Y, Cao W, Xi X, Ma C, Cui L and He W: The NKG2D ligand ULBP4 binds to TCRgamma9/delta2 and induces cytotoxicity to tumor cells through both TCRgammadelta and NKG2D. Blood. 114:310–317. 2009. View Article : Google Scholar : PubMed/NCBI | |
Todaro M, D'Asaro M, Caccamo N, Iovino F, Francipane MG, Meraviglia S, Orlando V, La Mendola C, Gulotta G, Salerno A, et al: Efficient killing of human colon cancer stem cells by gammadelta T lymphocytes. J Immunol. 182:7287–7296. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hoeres T, Smetak M, Pretscher D and Wilhelm M: Improving the efficiency of Vγ9Vδ2 T-Cell immunotherapy in cancer. Front Immunol. 9:8002018. View Article : Google Scholar : PubMed/NCBI | |
Zocchi MR, Costa D, Vene R, Tosetti F, Ferrari N, Minghelli S, Benelli R, Scabini S, Romairone E, Catellani S, et al: Zoledronate can induce colorectal cancer microenvironment expressing BTN3A1 to stimulate effector γδ T cells with antitumor activity. Oncoimmunology. 6:e12780992017. View Article : Google Scholar : PubMed/NCBI | |
Park JH and Lee HK: Function of γδ T cells in tumor immunology and their application to cancer therapy. Exp Mol Med. 53:318–327. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ramutton T, Buccheri S, Dieli F, Todaro M, Stassi G and Meraviglia S: γδ T cells as a potential tool in colon cancer immunotherapy. Immunotherapy. 6:989–999. 2014. View Article : Google Scholar : PubMed/NCBI | |
Smyth MJ, Swann J, Kelly JM, Cretney E, Yokoyama WM, Diefenbach A, Sayers TJ and Hayakawa Y: NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med. 200:1325–1335. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pei Y, Xiang Z, Wen K, Tu CR, Wang X, Zhang Y, Mu X, Liu Y and Tu W: CD137 costimulation enhances the antitumor activity of Vγ9Vδ2-T cells in IL-10-Mediated immunosuppressive tumor microenvironment. Front Immunol. 13:8721222022. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Wang J, Zhao A, Xia L, Jin H, Xia S and Shi T: The way of interaction between Vγ9Vδ2 T cells and tumor cells. Cytokine. 162:1561082023. View Article : Google Scholar : PubMed/NCBI | |
Mattarollo SR, Kenna T, Nieda M and Nicol AJ: Chemotherapy and zoledronate sensitize solid tumour cells to Vgamma9Vdelta2 T cell cytotoxicity. Cancer Immunol Immunother. 56:1285–1297. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Aymeric L, Locher C, Mattarollo SR, Delahaye NF, Pereira P, Boucontet L, Apetoh L, Ghiringhelli F, Casares N, et al: Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. J Exp Med. 208:491–503. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR and Dranoff G: MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA. 105:1285–1290. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vales-Gomez M, Chisholm SE, Cassady-Cain RL, Roda-Navarro P and Reyburn HT: Selective induction of expression of a ligand for the NKG2D receptor by proteasome inhibitors. Cancer Res. 68:1546–1554. 2008. View Article : Google Scholar : PubMed/NCBI | |
Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U, Hofsteenge J, Gratwohl A, Tichelli A, Paluszewska M, et al: NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities. Blood. 111:1428–1436. 2008. View Article : Google Scholar : PubMed/NCBI | |
Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, Kaiser S, Jobst J, Smirnow I, Wagner A, et al: Natural killer Cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res. 65:6321–6329. 2005. View Article : Google Scholar : PubMed/NCBI | |
Jones AB, Rocco A, Lamb LS, Friedman GK and Hjelmeland AB: Regulation of NKG2D stress ligands and its relevance in cancer progression. Cancers (Basel). 14:23392022. View Article : Google Scholar : PubMed/NCBI | |
Benelli R, Costa D, Salvini L, Tardito S, Tosetti F, Villa F, Zocchi MR and Poggi A: Targeting of colorectal cancer organoids with zoledronic acid conjugated to the anti-EGFR antibody cetuximab. J Immunother Cancer. 10:e0056602022. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, Wang Z, Wang C, Zhang Z, Xia W, et al: gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 40:785–800. 2014. View Article : Google Scholar : PubMed/NCBI | |
Corsale AM, Di Simone M, Lo Presti E, Dieli F and Meraviglia S: γδ T cells and their clinical application in colon cancer. Front Immunol. 14:10988472023. View Article : Google Scholar : PubMed/NCBI | |
Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KE, et al: Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 491:254–258. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee JS, Tato CM, Joyce-Shaikh B, Gulen MF, Cayatte C, Chen Y, Blumenschein WM, Judo M, Ayanoglu G, McClanahan TK, et al: Interleukin-23-Independent IL-17 production regulates intestinal epithelial permeability. Immunity. 43:727–738. 2015. View Article : Google Scholar : PubMed/NCBI | |
Reis BS, Darcy PW, Khan IZ, Moon CS, Kornberg AE, Schneider VS, Alvarez Y, Eleso O, Zhu C, Schernthanner M, et al: TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. Science. 377:276–284. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mu X, Xiang Z, Xu Y, He J, Lu J, Chen Y, Wang X, Tu CR, Zhang Y, Zhang W, et al: Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes. Cell Mol Immunol. 19:944–956. 2022. View Article : Google Scholar : PubMed/NCBI | |
Agerholm R and Bekiaris V: Evolved to protect, designed to destroy: IL-17-producing γδ T cells in infection, inflammation, and cancer. Eur J Immunol. 51:2164–2177. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lopes N, McIntyre C, Martin S, Raverdeau M, Sumaria N, Kohlgruber AC, Fiala GJ, Agudelo LZ, Dyck L, Kane H, et al: Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Nat Immunol. 22:179–192. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mensurado S and Silva-Santos B: Battle of the γδ T cell subsets in the gut. Trends Cancer. 8:881–883. 2022. View Article : Google Scholar : PubMed/NCBI | |
Silva-Santos B, Mensurado S and Coffelt SB: γδ T cells: Pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer. 19:392–404. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cai L, Chen A and Tang D: A new strategy for immunotherapy of Microsatellite-stable (MSS)-type advanced colorectal cancer: Multi-pathway combination therapy with PD-1/PD-L1 inhibitors. Immunology. Mar 22–2024.doi: 10.1111/imm.13785 (Epub ahead of print). View Article : Google Scholar | |
Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI | |
Postow MA, Sidlow R and Hellmann MD: Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 378:158–168. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al: Pembrolizumab versus chemotherapy for PD-L1-positive Non-Small-Cell lung cancer. N Engl J Med. 375:1823–1833. 2016. View Article : Google Scholar : PubMed/NCBI | |
Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, et al: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tie G, Messina KE, Yan J, Messina JA and Messina LM: Hypercholesterolemia induces oxidant stress that accelerates the ageing of hematopoietic stem cells. J Am Heart Assoc. 3:e0002412014. View Article : Google Scholar : PubMed/NCBI | |
Tie G, Yan J, Khair L, Messina JA, Deng A, Kang J, Fazzio T and Messina LM: Hypercholesterolemia increases colorectal cancer incidence by reducing production of NKT and γδ T cells from hematopoietic stem cells. Cancer Res. 77:2351–2362. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Shi T, Wang M, Li X, Gu Y, Zhang X, Zhang G and Chen W: B7-H3 inhibits the IFN-γ-dependent cytotoxicity of Vγ9Vδ2 T cells against colon cancer cells. Oncoimmunology. 9:17489912020. View Article : Google Scholar : PubMed/NCBI | |
Bas A, Swamy M, Abeler-Dorner L, Williams G, Pang DJ, Barbee SD and Hayday AC: Butyrophilin-like 1 encodes an enterocyte protein that selectively regulates functional interactions with T lymphocytes. Proc Natl Acad Sci USA. 108:4376–4381. 2011. View Article : Google Scholar : PubMed/NCBI | |
Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, Nussbaumer O, Deban L, Cipolat S, Hart R, Iannitto ML, et al: Epithelia use Butyrophilin-like molecules to shape organ-Specific γδ T cell compartments. Cell. 167:203–218.e17. 2016. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Peng Q, Cheng D, Pan T, Sun W, Wang H, Ma X, He R, Zhang H, Cui Z, et al: Cancer Cell-expressed BTNL2 facilitates tumour immune escape via engagement with IL-17A-producing γδ T cells. Nat Commun. 13:2312022. View Article : Google Scholar : PubMed/NCBI | |
Harly C, Guillaume Y, Nedellec S, Peigne CM, Monkkonen H, Monkkonen J, Li J, Kuball J, Adams EJ, Netzer S, et al: Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human γδ T-cell subset. Blood. 120:2269–2279. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Li Z, Huang W, Wang Y and Fan S: Prognostic and therapeutic significance of BTN3A proteins in tumors. J Cancer. 12:4505–4512. 2021. View Article : Google Scholar : PubMed/NCBI | |
Palakodeti A, Sandstrom A, Sundaresan L, Harly C, Nedellec S, Olive D, Scotet E, Bonneville M and Adams EJ: The molecular basis for modulation of human Vγ9Vδ2 T cell responses by CD277/butyrophilin-3 (BTN3A)-specific antibodies. J Biol Chem. 287:32780–32790. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cano CE, Pasero C, De Gassart A, Kerneur C, Gabriac M, Fullana M, Granarolo E, Hoet R, Scotet E, Rafia C, et al: BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells. Cell Rep. 36:1093592021. View Article : Google Scholar : PubMed/NCBI | |
De Gassart A, Le KS, Brune P, Agaugue S, Sims J, Goubard A, Castellano R, Joalland N, Scotet E, Collette Y, et al: Development of ICT01, a first-in-class, anti-BTN3A antibody for activating Vγ9Vδ2 T cell-mediated antitumor immune response. Sci Transl Med. 13:eabj08352021. View Article : Google Scholar : PubMed/NCBI | |
Blazquez JL, Benyamine A, Pasero C and Olive D: New insights into the regulation of γδ T cells by BTN3A and Other BTN/BTNL in tumor immunity. Front Immunol. 9:16012018. View Article : Google Scholar : PubMed/NCBI | |
Seiwert N, Adam J, Steinberg P, Wirtz S, Schwerdtle T, Adams-Quack P, Hovelmeyer N, Kaina B, Foersch S and Fahrer J: Chronic intestinal inflammation drives colorectal tumor formation triggered by dietary heme iron in vivo. Arch Toxicol. 95:2507–2522. 2021. View Article : Google Scholar : PubMed/NCBI | |
Santiago L, Castro M, Sanz-Pamplona R, Garzon M, Ramirez-Labrada A, Tapia E, Moreno V, Layunta E, Gil-Gomez G, Garrido M, et al: Extracellular granzyme A promotes colorectal cancer development by enhancing gut inflammation. Cell Rep. 32:1078472020. View Article : Google Scholar : PubMed/NCBI | |
Lebrero-Fernandez C, Wenzel UA, Akeus P, Wang Y, Strid H, Simren M, Gustavsson B, Borjesson LG, Cardell SL, Ohman L, et al: Altered expression of Butyrophilin (BTN) and BTN-like (BTNL) genes in intestinal inflammation and colon cancer. Immun Inflamm Dis. 4:191–200. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Wu M, Yang Y, Wang Z, He S, Tian X and Wang H: γδ T cells and the PD-1/PD-L1 axis: A love-hate relationship in the tumor microenvironment. J Transl Med. 22:5532024. View Article : Google Scholar : PubMed/NCBI | |
Wu K, Feng J, Xiu Y, Li Z, Lin Z, Zhao H, Zeng H, Xia W, Yu L and Xu B: Vδ2 T cell subsets, defined by PD-1 and TIM-3 expression, present varied cytokine responses in acute myeloid leukemia patients. Int Immunopharmacol. 80:1061222020. View Article : Google Scholar : PubMed/NCBI | |
Pan T, Yang H, Wang WY, Rui YY, Deng ZJ, Chen YC, Liu C and Hu H: Neoadjuvant immunotherapy with ipilimumab plus nivolumab in mismatch repair Deficient/Microsatellite Instability-High colorectal cancer: A preliminary report of case series. Clin Colorectal Cancer. 23:104–110. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lu H, Gu Y, Zhang X, Zhang G, Shi T and Chen W: Tim-3 suppresses the killing effect of Vγ9Vδ2 T cells on colon cancer cells by reducing perforin and granzyme B expression. Exp Cell Res. 386:1117192020. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Dai X, Du Y, Xiong X and Gui X: Preclinical development of a novel CCR8/CTLA-4 bispecific antibody for cancer treatment by disrupting CTLA-4 signaling on CD8 T cells and specifically depleting tumor-resident Tregs. Cancer Immunol Immunother. 73:2102024. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal V, Workman CJ and Vignali DAA: LAG-3 as the third checkpoint inhibitor. Nat Immunol. 24:1415–1422. 2023. View Article : Google Scholar : PubMed/NCBI | |
Perales O, Jilaveanu L, Adeniran A, Su DG, Hurwitz M, Braun DA, Kluger HM and Schoenfeld DA: TIGIT expression in renal cell carcinoma infiltrating T cells is variable and inversely correlated with PD-1 and LAG3. Cancer Immunol Immunother. 73:1922024. View Article : Google Scholar : PubMed/NCBI | |
Bhat AA, Nisar S, Singh M, Ashraf B, Masoodi T, Prasad CP, Sharma A, Maacha S, Karedath T, Hashem S, et al: Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun (Lond). 42:689–715. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shu Y and Zheng S: The current status and prospect of immunotherapy in colorectal cancer. Clin Transl Oncol. 26:39–51. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen DS and Mellman I: Elements of cancer immunity and the Cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yi Y, He HW, Wang JX, Cai XY, Li YW, Zhou J, Cheng YF, Jin JJ, Fan J and Qiu SJ: The functional impairment of HCC-infiltrating γδ T cells, partially mediated by regulatory T cells in a TGFβ- and IL-10-dependent manner. J Hepatol. 58:977–983. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hu G, Wu P, Cheng P, Zhang Z, Wang Z, Yu X, Shao X, Wu D, Ye J, Zhang T, et al: Tumor-infiltrating CD39+γδ Tregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology. 6:e12773052017. View Article : Google Scholar : PubMed/NCBI | |
Zhan Y, Zheng L, Liu J, Hu D, Wang J, Liu K, Guo J, Zhang T and Kong D: PLA2G4A promotes Right-sided colorectal cancer progression by inducing CD39+γδ Treg polarization. JCI Insight. 6:e1480282021. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Han F, Du Y, Shi H and Zhou W: Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 8:702023. View Article : Google Scholar : PubMed/NCBI | |
Li L, Cao B, Liang X, Lu S, Luo H, Wang Z, Wang S, Jiang J, Lang J and Zhu G: Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene. 38:2830–2843. 2019. View Article : Google Scholar : PubMed/NCBI | |
Allen J and Sears CL: Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: Contributions to colorectal cancer development. Genome Med. 11:112019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Y, Shi F, Zhang X, Zhang Y, Bi K, Chen X, Li L and Diao H: Phospholipid metabolites of the gut microbiota promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells. Gut Microbes. 14:20969942022. View Article : Google Scholar : PubMed/NCBI | |
Casanova MR, Azevedo-Silva J, Rodrigues LR and Preto A: Colorectal cancer cells increase the production of short chain fatty acids by propionibacterium freudenreichii impacting on cancer cells survival. Front Nutr. 5:442018. View Article : Google Scholar : PubMed/NCBI | |
Dupraz L, Magniez A, Rolhion N, Richard ML, Da Costa G, Touch S, Mayeur C, Planchais J, Agus A, Danne C, et al: Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep. 36:1093322021. View Article : Google Scholar : PubMed/NCBI | |
Cox LM, Maghzi AH, Liu S, Tankou SK, Dhang FH, Willocq V, Song A, Wasen C, Tauhid S, Chu R, et al: Gut microbiome in progressive multiple sclerosis. Ann Neurol. 89:1195–1211. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sandstrom A, Peigne CM, Leger A, Crooks JE, Konczak F, Gesnel MC, Breathnach R, Bonneville M, Scotet E and Adams EJ: The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity. 40:490–500. 2014. View Article : Google Scholar : PubMed/NCBI | |
Roselli M, Finamore A, Nuccitelli S, Carnevali P, Brigidi P, Vitali B, Nobili F, Rami R, Garaguso I and Mengheri E: Prevention of TNBS-induced colitis by different Lactobacillus and Bifidobacterium strains is associated with an expansion of gammadeltaT and regulatory T cells of intestinal intraepithelial lymphocytes. Inflamm Bowel Dis. 15:1526–1536. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ustjanzew A, Sencio V, Trottein F, Faber J, Sandhoff R and Paret C: Interaction between bacteria and the immune system for cancer immunotherapy: The α-GalCer alliance. Int J Mol Sci. 23:58962022. View Article : Google Scholar : PubMed/NCBI | |
Baxter NT, Ruffin MT, Rogers MAM and Schloss PD: Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Medicine. 8:372016. View Article : Google Scholar : PubMed/NCBI | |
Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, Brim H, Ashktorab H, Ng SC, Ng SSM, et al: Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res. 23:2061–2070. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, Tang L, Zhao H, Stenvang J, Li Y, et al: Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 66:70–78. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ooki A, Shinozaki E and Yamaguchi K: Immunotherapy in colorectal cancer: Current and future strategies. J Anus Rectum Colon. 5:11–24. 2021. View Article : Google Scholar : PubMed/NCBI | |
Heregger R, Huemer F, Steiner M, Gonzalez-Martinez A, Greil R and Weiss L: Unraveling resistance to immunotherapy in MSI-High colorectal cancer. Cancers (Basel). 15:50902023. View Article : Google Scholar : PubMed/NCBI | |
Stary V, Pandey RV, List J, Kleissl L, Deckert F, Kabiljo J, Laengle J, Gerakopoulos V, Oehler R, Watzke L, et al: Dysfunctional tumor-infiltrating Vδ1 + T lymphocytes in microsatellite-stable colorectal cancer. Nat Commun. 15:69492024. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Lamao Q, Gu M, Jin X, Liu Y, Tian F, Yu Y, Yuan P, Gao S, Fulford TS, et al: Unsynchronized butyrophilin molecules dictate cancer cell evasion of Vγ9Vδ2 T-cell killing. Cell Mol Immunol. 21:362–373. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Xiang Z, Alnaggar M, Kouakanou L, Li J, He J, Yang J, Hu Y, Chen Y, Lin L, et al: Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol Immunol. 18:427–439. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang XM, Lin XD, Shi W, Xie SX, Huang XN, Yin SH, Jiang XB, Hammock BD, Xu ZP and Lu XL: Nanobody-based bispecific T-cell engager (Nb-BiTE): A new platform for enhanced T-cell immunotherapy. Signal Transduct Target Ther. 8:3282023. View Article : Google Scholar : PubMed/NCBI | |
Magee MS, Abraham TS, Baybutt TR, Flickinger JC Jr, Ridge NA, Marszalowicz GP, Prajapati P, Hersperger AR, Waldman SA and Snook AE: Human GUCY2C-targeted chimeric antigen receptor (CAR)-expressing T cells eliminate colorectal cancer metastases. Cancer Immunol Res. 6:509–516. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li M, Li S, Zhao R, Lv J, Zheng D, Qin L, Li S, Wu Q, Long Y, Tang Z, et al: CD318 is a target of chimeric antigen receptor T cells for the treatment of colorectal cancer. Clin Exp Med. 23:2409–2419. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nicol AJ, Tokuyama H, Mattarollo SR, Hagi T, Suzuki K, Yokokawa K and Nieda M: Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer. 105:778–786. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kamrani A, Nasiri H, Hassanzadeh A, Ahmadian Heris J, Mohammadinasab R, Sadeghvand S, Sadeghi M, Valedkarimi Z, Hosseinzadeh R, Shomali N, et al: New immunotherapy approaches for colorectal cancer: Focusing on CAR-T cell, BiTE, and oncolytic viruses. Cell Commun Signal. 22:562024. View Article : Google Scholar : PubMed/NCBI | |
Van De Vyver AJ, Marrer-Berger E, Wang K, Lehr T and Walz AC: Cytokine release syndrome by T-cell-Redirecting therapies: Can we predict and modulate patient risk? Clin Cancer Res. 27:6083–6094. 2021. View Article : Google Scholar : PubMed/NCBI |