Role of SIK1 in tumors: Emerging players and therapeutic potentials (Review)
- Authors:
- Xinran Zhang
- Jing Liu
- Chenyang Zuo
- Xiaochun Peng
- Jinyuan Xie
- Ya Shu
- Dongxu Ao
- Yang Zhang
- Qingqing Ye
- Jun Cai
-
Affiliations: Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China, Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China, Department of Joint Surgery and Sports Medicine, Jingmen Central Hospital, Jingmen, Hubei 448000, P.R. China, Department of Breast Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China - Published online on: October 16, 2024 https://doi.org/10.3892/or.2024.8828
- Article Number: 169
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hollstein PE, Eichner LJ, Brun SN, Kamireddy A, Svensson RU, Vera LI, Ross DS, Rymoff TJ, Hutchins A, Galvez HM, et al: The AMPK-related kinases SIK1 and SIK3 mediate key tumor-suppressive effects of LKB1 in NSCLC. Cancer Discov. 9:1606–1627. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bright NJ, Thornton C and Carling D: The regulation and function of mammalian AMPK-related kinases. Acta Physiol (Oxf). 196:15–26. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Jiang Q, Li J and Guo J: The potent roles of Salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther. 5:1502020. View Article : Google Scholar : PubMed/NCBI | |
Wein MN, Foretz M, Fisher DE, Xavier RJ and Kronenberg HM: Salt-inducible kinases: Physiology, regulation by cAMP, and therapeutic potential. Trends Endocrinol Metab. 29:723–735. 2028. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Takemori H, Halder SK, Nonaka Y and Okamoto M: Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet-treated rat adrenal. FEBS Lett. 453:135–139. 1999. View Article : Google Scholar : PubMed/NCBI | |
Okamoto M, Takemori H and Katoh Y: Salt-inducible kinase in steroidogenesis and adipogenesis. Trends Endocrinol Metab. 15:21–26. 2004. View Article : Google Scholar : PubMed/NCBI | |
Feldman JD, Vician L, Crispino M, Hoe W, Baudry M and Herschman HR: The salt-inducible kinase, SIK, is induced by depolarization in brain. J Neurochem. 74:2227–2238. 2000. View Article : Google Scholar : PubMed/NCBI | |
Horike N, Takemori H, Katoh Y, Doi J, Min L, Asano T, Sun XJ, Yamamoto H, Kasayama S, Muraoka M, et al: Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem. 278:18440–18447. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Chen L, Qin Q and Sun X: Salt-Inducible Kinase 2: An oncogenic signal transmitter and potential target for cancer therapy. Front Oncol. 9:182019. View Article : Google Scholar : PubMed/NCBI | |
Song D, Yin L, Wang C and Wen X: Adenovirus-mediated expression of SIK1 improves hepatic glucose and lipid metabolism in type 2 diabetes mellitus rats. PLoS One. 14:e02109302019. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Song D, Fu J and Wen X: SIK1 Regulates CRTC2-Mediated gluconeogenesis signaling pathway in human and mouse liver cells. Front Endocrinol (Lausanne). 11:5802020. View Article : Google Scholar : PubMed/NCBI | |
Gao WW, Tang HV, Cheng Y, Chan CP, Chan CP and Jin DY: Suppression of gluconeogenic gene transcription by SIK1-induced ubiquitination and degradation of CRTC1. Biochim Biophys Acta Gene Regul Mech. 1861:211–223. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song D, Yin L, Wang C and Wen X: Zhenqing recipe attenuates Non-alcoholic fatty liver disease by regulating the SIK1/CRTC2 signaling in experimental diabetic rats. BMC Complement Med Ther. 20:272020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Takemori H, Wang C, Fu J, Xu M, Xiong L, Li N and Wen X: Role of salt inducible kinase 1 in high glucose-induced lipid accumulation in HepG2 cells and metformin intervention. Life Sci. 173:107–115. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Liu P, Wang ZC, Zou L, Santiago S, Garbitt V, Gjoerup OV, Iglehart JD, Miron A, Richardson AL, et al: SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis. Sci Signal. 2:ra352009. View Article : Google Scholar : PubMed/NCBI | |
Park M, Miyoshi C, Fujiyama T, Kakizaki M, Ikkyu A, Honda T, Choi J, Asano F, Mizuno S, Takahashi S, et al: Loss of the conserved PKA sites of SIK1 and SIK2 increases sleep need. Sci Rep. 10:86762020. View Article : Google Scholar : PubMed/NCBI | |
Darling NJ and Cohen P: Nuts and bolts of the salt-inducible kinases (SIKs). Biochem J. 478:1377–1397. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pires NM, Igreja B and Soares-da-Silva P: Antagonistic modulation of SIK1 and SIK2 isoforms in high blood pressure and cardiac hypertrophy triggered by high-salt intake. Clin Exp Hypertens. 43:428–435. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jaitovich A and Bertorello AM: Intracellular sodium sensing: SIK1 network, hormone action and high blood pressure. Biochim Biophys Acta. 1802:1140–1149. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hansen J, Snow C, Tuttle E, Ghoneim DH, Yang CS, Spencer A, Gunter SA, Smyser CD, Gurnett CA, Shinawi M, et al: De novo mutations in SIK1 cause a spectrum of developmental epilepsies. Am J Hum Genet. 96:682–690. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pröschel C, Hansen JN, Ali A, Tuttle E, Lacagnina M, Buscaglia G, Halterman MW and Paciorkowski AR: Epilepsy-causing sequence variations in SIK1 disrupt synaptic activity response gene expression and affect neuronal morphology. Eur J Hum Genet. 25:216–221. 2017. View Article : Google Scholar : PubMed/NCBI | |
Peng L, Li C, Tang X, Xiang Y, Xu Y, Cao W, Zhou H and Li S: Blocking salt-inducible kinases with YKL-06-061 prevents PTZ-induced seizures in mice. Brain Behav. 13:e33052023. View Article : Google Scholar : PubMed/NCBI | |
Babbe H, Sundberg TB, Tichenor M, Seierstad M, Bacani G, Berstler J, Chai W, Chang L, Chung M, Coe K, et al: Identification of highly selective SIK1/2 inhibitors that modulate innate immune activation and suppress intestinal inflammation. Proc Natl Acad Sci USA. 121:e23070861202024. View Article : Google Scholar : PubMed/NCBI | |
Ponnusamy L and Manoharan R: Distinctive role of SIK1 and SIK3 isoforms in aerobic glycolysis and cell growth of breast cancer through the regulation of p53 and mTOR signaling pathways. Biochim Biophys Acta Mol Cell Res. 1868:1189752021. View Article : Google Scholar : PubMed/NCBI | |
Qu C, He D, Lu X, Dong L, Zhu Y, Zhao Q, Jiang X, Chang P, Jiang X, Wang L, et al: Salt-inducible Kinase (SIK1) regulates HCC progression and WNT/β-catenin activation. J Hepatol. 64:1076–1089. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xin L, Liu C, Liu Y, Mansel RE, Ruge F, Davies E, Jiang WG and Martin TA: SIKs suppress tumor function and regulate drug resistance in breast cancer. Am J Cancer Res. 11:3537–3557. 2021.PubMed/NCBI | |
Huang C, Liu J, Xu L, Hu W, Wang J, Wang M and Yao X: MicroRNA-17 promotes cell proliferation and migration in human colorectal cancer by downregulating SIK1. Cancer Manag Res. 11:3521–3534. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ren ZG, Dong SX, Han P and Qi J: miR-203 promotes proliferation, migration and invasion by degrading SIK1 in pancreatic cancer. Oncol Rep. 35:1365–1374. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zang X, Jiang J, Gu J, Chen Y, Wang M, Zhang Y, Fu M, Shi H, Cai H, Qian H, et al: Circular RNA EIF4G3 suppresses gastric cancer progression through inhi bition of β-catenin by promoting δ-catenin ubiquitin degradation and u pregulating SIK1. Mol Cancer. 21:1412022. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Xue P, Han X, Zhang C, Yang L, Liu L, Wang X, Li H, Fu J and Zhou Y: Exosomal miR-130b-3p targets SIK1 to inhibit medulloblastoma tumorigenesis. Cell Death Dis. 11:4082020. View Article : Google Scholar : PubMed/NCBI | |
Hartono AB, Kang HJ, Shi L, Phipps W, Ungerleider N, Giardina A, Chen W, Spraggon L, Somwar R, Moroz K, et al: Salt-inducible Kinase 1 is a potential therapeutic target in desmoplastic small round cell tumor. Oncogenesis. 11:182022. View Article : Google Scholar : PubMed/NCBI | |
Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min L and Okamoto M: Salt-inducible kinase (SIK) isoforms: Their involvement in steroidogenesis and adipogenesis. Mol Cell Endocrinol. 217:109–112. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG and Alessi DR: LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23:833–843. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sakamoto K, Bultot L and Göransson O: The Salt-inducible kinases: Emerging metabolic regulators. Trends Endocrinol Metab. 29:827–840. 2018. View Article : Google Scholar : PubMed/NCBI | |
Taub M, Springate JE and Cutuli F: Targeting of renal proximal tubule Na,K-ATPase by Salt-inducible kinase. Biochem Biophys Res Commun. 393:339–344. 2010. View Article : Google Scholar : PubMed/NCBI | |
Feng S, Wei F, Shi H, Chen S, Wang B, Huang D and Luo L: Roles of Salt-inducible kinases in cancer (Review). Int J Oncol. 63:1182023. View Article : Google Scholar : PubMed/NCBI | |
Katoh Y, Takemori H, Lin XZ, Tamura M, Muraoka M, Satoh T, Tsuchiya Y, Min L, Doi J, Miyauchi A, et al: Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS J. 273:2730–2748. 2006. View Article : Google Scholar : PubMed/NCBI | |
Clark K, MacKenzie KF, Petkevicius K, Kristariyanto Y, Zhang J, Choi HG, Peggie M, Plater L, Pedrioli PG, McIver E, et al: Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proc Natl Acad Sci USA. 109:16986–16991. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto YK, Satoh T, Okamoto M and Takemori H: Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity. J Cell Biochem. 104:1724–1739. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bertorello AM and Zhu JK: SIK1/SOS2 networks: Decoding sodium signals via calcium-responsive protein kinase pathways. Pflugers Arch. 458:613–619. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jaleel M, Villa F, Deak M, Toth R, Prescott AR, Van Aalten DM and Alessi DR: The Ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem J. 394:545–555. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jaleel M, McBride A, Lizcano JM, Deak M, Toth R, Morrice NA and Alessi DR: Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate. FEBS Lett. 579:1417–1423. 2005. View Article : Google Scholar : PubMed/NCBI | |
Al-Hakim AK, Göransson O, Deak M, Toth R, Campbell DG, Morrice NA, Prescott AR and Alessi DR: 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. J Cell Sci. 118:5661–5673. 2005. View Article : Google Scholar : PubMed/NCBI | |
Berggreen C, Henriksson E, Jones HA, Morrice N and Göransson O: cAMP-elevation mediated by β-adrenergic stimulation inhibits salt-inducible kinase (SIK) 3 activity in adipocytes. Cell Signal. 24:1863–1871. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y, Suzuki K, Nakamoto M, Shimizu E, Minna JD and Yokota J: Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene. 26:5911–5918. 2007. View Article : Google Scholar : PubMed/NCBI | |
Shackelford DB: Unravelling the connection between metabolism and tumorigenesis through studies of the liver kinase B1 tumour suppressor. J Carcinog. 12:162013. View Article : Google Scholar : PubMed/NCBI | |
Eneling K, Brion L, Pinto V, Pinho MJ, Sznajder JI, Mochizuki N, Emoto K, Soares-da-Silva P and Bertorello AM: Salt-inducible kinase 1 regulates E-cadherin expression and intercellular junction stability. FASEB J. 26:3230–3239. 2012. View Article : Google Scholar : PubMed/NCBI | |
Grahame Hardie D: AMP-activated protein kinase: A key regulator of energy balance with many roles in human disease. J Intern Med. 276:543–559. 2014. View Article : Google Scholar : PubMed/NCBI | |
Taub M: Salt inducible kinase signaling networks: Implications for acute kidney injury and therapeutic potential. Int J Mol Sci. 20:32192019. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Wang C, Xue Y, Liu X, Chen S, Song C, Yang Y and Guo Y: Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nat Commun. 10:11992019. View Article : Google Scholar : PubMed/NCBI | |
Sonntag T, Vaughan JM and Montminy M: 14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs). FEBS J. 285:467–480. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thommesen L, Nørsett K, Sandvik AK, Hofsli E and Laegreid A: Regulation of inducible cAMP early repressor expression by gastrin and cholecystokinin in the pancreatic cell line AR42J. J Biol Chem. 275:4244–4250. 2000. View Article : Google Scholar : PubMed/NCBI | |
Thommesen L, Hofsli E, Paulssen RH, Anthonsen MW and Laegreid A: Molecular mechanisms involved in gastrin-mediated regulation of cAMP-responsive promoter elements. Am J Physiol Endocrinol Metab. 281:E1316–E1325. 2001. View Article : Google Scholar : PubMed/NCBI | |
Berdeaux R, Goebel N, Banaszynski L, Takemori H, Wandless T, Shelton GD and Montminy M: SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med. 13:597–603. 2007. View Article : Google Scholar : PubMed/NCBI | |
Selvik LK, Rao S, Steigedal TS, Haltbakk I, Misund K, Bruland T, Prestvik WS, Lægreid A and Thommesen L: Salt-inducible kinase 1 (SIK1) is induced by gastrin and inhibits migration of gastric adenocarcinoma cells. PLoS One. 9:e1124852014. View Article : Google Scholar : PubMed/NCBI | |
van der Linden AM, Nolan KM and Sengupta P: KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J. 26:358–370. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chan JK, Sun L, Yang XJ, Zhu G and Wu Z: Functional characterization of an amino-terminal region of HDAC4 that possesses MEF2 binding and transcriptional repressive activity. J Biol Chem. 278:23515–23521. 2003. View Article : Google Scholar : PubMed/NCBI | |
Haberland M, Montgomery RL and Olson EN: The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat Rev Genet. 10:32–42. 2009. View Article : Google Scholar : PubMed/NCBI | |
Longin S, Jordens J, Martens E, Stevens I, Janssens V, Rondelez E, De Baere I, Derua R, Waelkens E, Goris J, et al: An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator. Biochem J. 380:111–119. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pagel P, Zatti A, Kimura T, Duffield A, Chauvet V, Rajendran V and Caplan MJ: Ion pump-interacting proteins: Promising new partners. Ann N Y Acad Sci. 986:360–368. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sjöström M, Stenström K, Eneling K, Zwiller J, Katz AI, Takemori H and Bertorello AM: SIK1 is part of a cell sodium-sensing network that regulates active sodium transport through a calcium-dependent process. Proc Natl Acad Sci USA. 104:16922–16927. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Gao W, Yang K, Tao H and Yang H: Salt-Inducible Kinase 1 (SIK1) is induced by alcohol and suppresses microglia inflammation via NF-κB signaling. Cell Physiol Biochem. 47:1411–1421. 2018. View Article : Google Scholar : PubMed/NCBI | |
Norman P: The use of salt-inducible kinase inhibitors to treat autoimmune and inflammatory diseases: Evaluation of WO2013136070. Expert Opin Ther Pat. 24:943–946. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sundberg TB, Liang Y, Wu H, Choi HG, Kim ND, Sim T, Johannessen L, Petrone A, Khor B, Graham DB, et al: Development of chemical probes for investigation of Salt-inducible kinase function in vivo. ACS Chem Biol. 11:2105–2111. 2016. View Article : Google Scholar : PubMed/NCBI | |
McIver Edward G, Bryans Justin S, Smiljanic ELA, Lewis Stephen J, Hough J and Drake T: Pyrimidine derivatives capable of inhibiting one or more kinases. 2009. | |
Raposo TP, Beirão BC, Pang LY, Queiroga FL and Argyle DJ: Inflammation and cancer: Till death tears them apart. Vet J. 205:161–174. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chai EZ, Siveen KS, Shanmugam MK, Arfuso F and Sethi G: Analysis of the intricate relationship between chronic inflammation and cancer. Biochem J. 468:1–15. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Qiao J, Yu Q, Liu B, Zhen J, Liu Y, Ma Q, Li Y, Wang Q, Wang C, et al: Role of SIK1 in the transition of acute kidney injury into chronic kidney disease. J Transl Med. 19:692021. View Article : Google Scholar : PubMed/NCBI | |
Meng J, Li N, Liu X, Qiao S, Zhou Q, Tan J, Zhang T, Dong Z, Qi X, Kijlstra A, et al: NLRP3 attenuates intraocular inflammation by inhibiting AIM2-mediated pyroptosis through the phosphorylated salt-inducible kinase 1/Sterol regulatory element binding transcription factor 1 pathway. Arthritis Rheumatol. 75:842–855. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pirie E, Cauntay P, Fu W, Ray S, Pan C, Lusis AJ, Hsiao J, Burel SA, Narayanan P, Crooke RM, et al: Hybrid mouse diversity panel identifies genetic architecture associated with the acute antisense oligonucleotide-mediated inflammatory response to a 2'-O-Methoxyethyl antisense oligonucleotide. Nucleic Acid Ther. 29:266–277. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lombardi MS, Gilliéron C, Dietrich D and Gabay C: SIK inhibition in human myeloid cells modulates TLR and IL-1R signaling and induces an anti-inflammatory phenotype. J Leukoc Biol. 99:711–721. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Wang L, Yi Y, Deng D, Shi M, Tang M, Li N, Wei H, Zhang R, Su K, et al: Discovery of pyrimidine-5-carboxamide derivatives as novel salt-inducible kinases (SIKs) inhibitors for inflammatory bowel disease (IBD) treatment. Eur J Med Chem. 256:1154692023 | |
Qu C and Qu Y: Down-regulation of salt-inducible kinase 1 (SIK1) is mediated by RNF2 in hepatocarcinogenesis. Oncotarget. 8:3144–3155. 2017. View Article : Google Scholar : PubMed/NCBI | |
Murray CW, Brady JJ, Tsai MK, Li C, Winters IP, Tang R, Andrejka L, Ma RK, Kunder CA, Chu P and Winslow MM: An LKB1-SIK axis suppresses lung tumor growth and controls differentiation. Cancer Discov. 9:1590–1605. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J and Peng X: Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine. 172:1564032023. View Article : Google Scholar : PubMed/NCBI | |
Fu X, Tang Y, Wu W, Ouyang Y, Tan D and Huang Y: Exosomal microRNA-25 released from cancer cells targets SIK1 to promote hepatocellular carcinoma tumorigenesis. Dig Liver Dis. 54:954–963. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Li H, Wang P, Wang J and Yao X: SIK1 suppresses colorectal cancer metastasis and chemoresistance via the TGF-β signaling pathway. J Cancer. 14:2455–2467. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jin Y and Wang H: Circ_0078607 inhibits the progression of ovarian cancer via regulating the miR-32-5p/SIK1 network. J Ovarian Res. 15:32022. View Article : Google Scholar : PubMed/NCBI | |
Kou B, Wang XD, Sun XP, Qi Q, Yang M, Yun YN, Zhou JS and Liu W: LKB1 inhibits proliferation, metastasis and angiogenesis of thyroid cancer by upregulating SIK1. J Cancer. 13:2872–2883. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li B, Chen Y, Wang F, Guo J, Fu W, Li M, Zheng Q, Liu Y, Fan L, Li L and Xu C: Bmi1 drives hepatocarcinogenesis by repressing the TGFβ2/SMAD signalling axis. Oncogene. 39:1063–1079. 2020. View Article : Google Scholar : PubMed/NCBI | |
De Faveri LE, Hurst CD, Roulson JA, Wood H, Sanchez-Carbayo M, Knowles MA and Chapman EJ: Polycomb repressor Complex 1 member, BMI1 contributes to urothelial tumorigenesis through p16-independent mechanisms. Transl Oncol. 8:387–399. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Wu Y, Lin M, Wang G, Liu J, Xie M, Zheng B, Shen C and Shen J: BMI1 promotes osteosarcoma proliferation and metastasis by repressing the transcription of SIK1. Cancer Cell Int. 22:1362022. View Article : Google Scholar : PubMed/NCBI | |
Nguyen K, Hebert K, McConnell E, Cullen N, Cheng T, Awoyode S, Martin E, Chen W, Wu T, Alahari SK, et al: LKB1 signaling and patient survival outcomes in hepatocellular carcinoma. Pharmacol Res. 192:1067572023. View Article : Google Scholar : PubMed/NCBI | |
Yao YH, Cui Y, Qiu XN, Zhang LZ, Zhang W, Li H and Yu JM: Attenuated LKB1-SIK1 signaling promotes epithelial-mesenchymal transition and radioresistance of non-small cell lung cancer cells. Chin J Cancer. 35:502016. View Article : Google Scholar : PubMed/NCBI | |
Seoane J and Gomis RR: TGF-β Family signaling in tumor suppression and cancer progression. Cold Spring Harb Perspect Biol. 9:a0222772017. View Article : Google Scholar : PubMed/NCBI | |
Kowanetz M, Lönn P, Vanlandewijck M, Kowanetz K, Heldin CH and Moustakas A: TGFbeta induces SIK to negatively regulate type I receptor kinase signaling. J Cell Biol. 182:655–662. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ang HL, Mohan CD, Shanmugam MK, Leong HC, Makvandi P, Rangappa KS, Bishayee A, Kumar AP and Sethi G: Mechanism of epithelial-mesenchymal transition in cancer and its regulation by natural compounds. Med Res Rev. 43:1141–1200. 2023. View Article : Google Scholar : PubMed/NCBI | |
Saitoh M: Transcriptional regulation of EMT transcription factors in cancer. Semin Cancer Biol. 97:21–29. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gradek F, Lopez-Charcas O, Chadet S, Poisson L, Ouldamer L, Goupille C, Jourdan ML, Chevalier S, Moussata D, Besson P, et al: Sodium Channel Na(v)1.5 controls Epithelial-to-mesenchymal transition and invasiveness in breast cancer cells through its regulation by the salt-inducible Kinase-1. Sci Rep. 9:186522019. View Article : Google Scholar : PubMed/NCBI | |
Lönn P, Vanlandewijck M, Raja E, Kowanetz M, Watanabe Y, Kowanetz K, Vasilaki E, Heldin CH and Moustakas A: Transcriptional induction of salt-inducible kinase 1 by transforming growth factor β leads to negative regulation of type I receptor signaling in cooperation with the Smurf2 ubiquitin ligase. J Biol Chem. 287:12867–12878. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A and Postigo A: EMT-activating transcription factors in cancer: Beyond EMT and tumor invasiveness. Cell Mol Life Sci. 69:3429–3456. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nelson M, Yang M, Millican-Slater R and Brackenbury WJ: Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget. 6:32914–32929. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Kozminski DJ, Wold LA, Modak R, Calhoun JD, Isom LL and Brackenbury WJ: Therapeutic potential for phenytoin: Targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Res Treat. 134:603–615. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhu QQ, Ma C, Wang Q, Song Y and Lv T: The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol. 37:185–197. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Jiang Q, Gao B, Zhang X, Bu L, Wang L, Lin Y, Xie W, Li J and Guo J: AKT blocks SIK1-mediated repression of STAT3 to promote breast tumorigenesis. Cancer Res. 83:1264–1279. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen JL, Chen F, Zhang TT and Liu NF: Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues. Int J Mol Med. 37:1601–1610. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Yang M and Xu Y: MicroRNA-373 promotes cell migration via targeting salt-inducible kinase 1 expression in melanoma. Exp Ther Med. 16:4759–4764. 2018.PubMed/NCBI | |
Peng J, Hou F, Zhu W, Li J and Teng Z: lncRNA NR2F1-AS1 regulates miR-17/SIK1 axis to suppress the invasion and migration of cervical squamous cell carcinoma cells. Reprod Sci. 27:1534–1539. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bawa P, Zackaria S, Verma M, Gupta S, Srivatsan R, Chaudhary B and Srinivasan S: Integrative analysis of normal long intergenic non-coding RNAs in prostate cancer. PLoS One. 10:e01221432015. View Article : Google Scholar : PubMed/NCBI | |
Bon H, Wadhwa K, Schreiner A, Osborne M, Carroll T, Ramos-Montoya A, Ross-Adams H, Visser M, Hoffmann R, Ahmed AA, et al: Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol Cancer Res. 13:620–635. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao T, Zhang X, Zhao J, Zhou F, Wang Y, Zhao Z, Xing J, Chen B, Li J and Liu S: SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer. Cancer Lett. 469:89–101. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Alfraidi A, Zhang S, Santiago-O'Farrill JM, Yerramreddy Reddy VK, Alsaadi A, Ahmed AA, Yang H, Liu J, Mao W, et al: A novel compound ARN-3236 inhibits Salt-inducible kinase 2 and sensitizes ovarian cancer cell lines and xenografts to paclitaxel. Clin Cancer Res. 23:1945–1954. 2017. View Article : Google Scholar : PubMed/NCBI | |
Du WQ, Zheng JN and Pei DS: The diverse oncogenic and tumor suppressor roles of salt-inducible kinase (SIK) in cancer. Expert Opin Ther Targets. 20:477–485. 2016. View Article : Google Scholar : PubMed/NCBI | |
Charoenfuprasert S, Yang YY, Lee YC, Chao KC, Chu PY, Lai CR, Hsu KF, Chang KC, Chen YC, Chen LT, et al: Identification of salt-inducible kinase 3 as a novel tumor antigen associated with tumorigenesis of ovarian cancer. Oncogene. 30:3570–3584. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Xu B, Gu Y, Ji N, Meng P and Dong L: Long noncoding RNA SNHG1 protects brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-298 and upregulating SIK1 expression. Biotechnol Lett. 43:1163–1174. 2021. View Article : Google Scholar : PubMed/NCBI |