1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Philips CA, Rajesh S, Nair DC, Ahamed R,
Abduljaleel JK and Augustine P: Hepatocellular Carcinoma in 2021:
An exhaustive update. Cureus. 13:e192742021.PubMed/NCBI
|
3
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Llovet JM, Zucman-Rossi J, Pikarsky E,
Sangro B, Schwartz M, Sherman M and Gores G: Hepatocellular
carcinoma. Nat Rev Dis Primers. 2:160182016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lohitesh K, Chowdhury R and Mukherjee S:
Resistance a major hindrance to chemotherapy in hepatocellular
carcinoma: An insight. Cancer Cell Int. 18:442018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jing F, Li X, Jiang H, Sun J and Guo Q:
Combating drug resistance in hepatocellular carcinoma: No awareness
today, no action tomorrow. Biomed Pharmacother. 167:1155612023.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Lei YR, He XL, Li J and Mo CF: Drug
resistance in hepatocellular carcinoma: Theoretical basis and
therapeutic aspects. Front Biosci (Landmark Ed). 29:522024.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Liu J, Dang H and Wang XW: The
significance of intertumor and intratumor heterogeneity in liver
cancer. Exp Mol Med. 50:e4162018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Khatib SA and Wang XW: Causes and
functional intricacies of inter- and intratumor heterogeneity of
primary liver cancers. Adv Cancer Res. 156:75–102. 2022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nio K, Yamashita T and Kaneko S: The
evolving concept of liver cancer stem cells. Mol Cancer. 16:42017.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Marin JJG, Macias RIR, Monte MJ, Romero
MR, Asensio M, Sanchez-Martin A, Cives-Losada C, Temprano AG,
Espinosa-Escudero R, Reviejo M, et al: Molecular Bases of Drug
Resistance in Hepatocellular Carcinoma. Cancers (Basel).
12:16632020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chung A, Nasralla D and Quaglia A:
Understanding the immunoenvironment of primary liver cancer: A
Histopathology Perspective. J Hepatocell Carcinoma. 9:1149–1169.
2022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ladd AD, Duarte S, Sahin I and Zarrinpar
A: Mechanisms of drug resistance in HCC. Hepatology. 79:926–940.
2024.PubMed/NCBI
|
14
|
Modjtahedi H and Dean C: The receptor for
EGF and its ligands-expression, prognostic value and target for
therapy in cancer (review). Int J Oncol. 4:277–296. 1994.PubMed/NCBI
|
15
|
Baselga J and Mendelsohn J: Receptor
blockade with monoclonal antibodies as anti-cancer therapy.
Pharmacol Ther. 64:127–154. 1994. View Article : Google Scholar : PubMed/NCBI
|
16
|
Meric-Bernstam F, Johnson AM, Dumbrava
EEI, Raghav K, Balaji K, Bhatt M, Murthy RK, Rodon J and Piha-Paul
SA: Advances in HER2-Targeted Therapy: Novel agents and
opportunities beyond breast and gastric cancer. Clin Cancer Res.
25:2033–2041. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Halder S, Basu S, Lall SP, Ganti AK, Batra
SK and Seshacharyulu P: Targeting the EGFR signaling pathway in
cancer therapy: What's new in 2023? Expert Opin Ther Targets.
27:305–324. 2023. View Article : Google Scholar : PubMed/NCBI
|
18
|
Selene II, Ozen M and Patel RA:
Hepatocellular Carcinoma: Advances in systemic therapy. Semin
Intervent Radiol. 41:56–62. 2024. View Article : Google Scholar : PubMed/NCBI
|
19
|
Khelwatty SA, Puvanenthiran S, Essapen S,
Bagwan I, Seddon AM and Modjtahedi H: HER2 expression is predictive
of survival in cetuximab treated patients with RAS wild type
metastatic colorectal cancer. Cancers (Basel). 13:6382021.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Khan T, Seddon A, Khelwatty S, Dalgleish
A, Bagwan I, Mudan S and Modjtahed H: The co-expression of HER
family members and CD109 is common in pancreatic cancer. Med Res
Arch. 11:1–35. 2023. View Article : Google Scholar : PubMed/NCBI
|
21
|
Khan T, Seddon AM, Dalgleish AG, Khelwatty
S, Ioannou N, Mudan S and Modjtahedi H: Synergistic activity of
agents targeting growth factor receptors, CDKs and downstream
signaling molecules in a panel of pancreatic cancer cell lines and
the identification of antagonistic combinations: implications for
future clinical trials in pancreatic cancer. Oncol Rep.
44:2581–2594. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mulliqi E, Khelwatty S, Morgan A, Ashkan K
and Modjtahedi H: Synergistic effects of neratinib in combination
with palbociclib or miransertib in brain cancer cells. World J
Oncol. 15:492–505. 2024. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu YC, Yeh CT and Lin KH: Cancer stem
cell functions in hepatocellular carcinoma and comprehensive
therapeutic strategies. Cells. 9:13312020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shi JH, Guo WZ, Jin Y, Zhang HP, Pang C,
Li J, Line PD and Zhang SJ: Recognition of HER2 expression in
hepatocellular carcinoma and its significance in postoperative
tumor recurrence. Cancer Med. 8:1269–1278. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jin H, Shi Y, Lv Y, Yuan S, Ramirez CFA,
Lieftink C, Wang L, Wang S, Wang C, Dias MH, et al: EGFR activation
limits the response of liver cancer to lenvatinib. Nature.
595:730–734. 2021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Marshall G and Cao J: Mechanism-directed
combinational immunotherapies in liver cancer hold promise. Cell
Mol Immunol. 20:1395–1397. 2023. View Article : Google Scholar : PubMed/NCBI
|
27
|
Steinway SN, Dang H, You H, Rountree CB
and Ding W: The EGFR/ErbB3 pathway acts as a compensatory survival
mechanism upon c-Met Inhibition in Human c-Met+ hepatocellular
carcinoma. PLoS One. 10:e01281592015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu H, Zhang B and Sun Z: Spectrum of EGFR
aberrations and potential clinical implications: Insights from
integrative pan-cancer analysis. Cancer Commun (Lond). 40:43–59.
2020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Puvanenthiran S, Essapen S, Haagsma B,
Bagwan I, Green M, Khelwatty SA, Seddon A and Modjtahedi H:
Co-expression and prognostic significance of the HER family
members, EGFRvIII, c-MET, CD44 in patients with ovarian cancer.
Oncotarget. 9:19662–19674. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Han W and Lo HW: Landscape of EGFR
signaling network in human cancers: Biology and therapeutic
response in relation to receptor subcellular locations. Cancer
Lett. 318:124–134. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li C, Iida M, Dunn EF, Ghia AJ and Wheeler
DL: Nuclear EGFR contributes to acquired resistance to cetuximab.
Oncogene. 28:3801–3813. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tortora G, Gelardi T, Ciardiello F and
Bianco R: The rationale for the combination of selective EGFR
inhibitors with cytotoxic drugs and radiotherapy. Int J Biol
Markers. 22:47–52. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yarden Y and Sliwkowski MX: Untangling the
ErbB signalling network. Nat Rev Mol Cell Biol. 2:127–137. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Li LT, Jiang G, Chen Q and Zheng JN: Ki67
is a promising molecular target in the diagnosis of cancer
(Review). Mol Med Rep. 11:1566–1572. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sun X and Kaufman PD: Ki-67: More than a
proliferation marker. Chromosoma. 127:175–186. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Michalopoulos GK and Khan Z: Liver
regeneration, growth factors, and amphiregulin. Gastroenterology.
128:503–506. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Natarajan A, Wagner B and Sibilia M: The
EGF receptor is required for efficient liver regeneration. Proc
Natl Acad Sci USA. 104:17081–17086. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Berasain C and Avila MA: The EGFR
signalling system in the liver: From hepatoprotection to
hepatocarcinogenesis. J Gastroenterol. 49:9–23. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lo HW and Hung MC: Nuclear EGFR signalling
network in cancers: linking EGFR pathway to cell cycle progression,
nitric oxide pathway and patient survival. Br J Cancer. 94:184–188.
2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Brand TM, Iida M, Luthar N, Starr MM,
Huppert EJ and Wheeler DL: Nuclear EGFR as a molecular target in
cancer. Radiother Oncol. 108:370–377. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Modi S, Jacot W, Yamashita T, Sohn J,
Vidal M, Tokunaga E, Tsurutani J, Ueno NT, Prat A, Chae YS, et al:
Trastuzumab deruxtecan in previously treated HER2-Low advanced
breast cancer. N Engl J Med. 387:9–20. 2022. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yang C, Brezden-Masley C, Joy AA, Sehdev
S, Modi S, Simmons C and Henning JW: Targeting HER2-low in
metastatic breast cancer: An evolving treatment paradigm. Ther Adv
Med Oncol. 15:175883592311754402023. View Article : Google Scholar : PubMed/NCBI
|
43
|
Platten M: EGFRvIII vaccine in
glioblastoma-InACT-IVe or not ReACTive enough? Neuro Oncol.
19:1425–1426. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
An Z, Aksoy O, Zheng T, Fan QW and Weiss
WA: Epidermal growth factor receptor and EGFRvIII in glioblastoma:
Signaling pathways and targeted therapies. Oncogene. 37:1561–1575.
2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zebertavage L, Bambina S, Shugart J, Alice
A, Zens KD, Lauer P, Hanson B, Gough MJ, Crittenden MR and Bahjat
KS: A microbial-based cancer vaccine for induction of
EGFRvIII-specific CD8+ T cells and anti-tumor immunity. PLoS One.
14:e02091532019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Greenall SA, McKenzie M, Seminova E,
Dolezal O, Pearce L, Bentley J, Kuchibhotla M, Shengnan CC,
Mcdonald KL, Kornblum HI, et al: Most clinical anti-EGFR antibodies
do not neutralize both wtEGFR and EGFRvIII activation in glioma.
Neuro Oncol. 21:1016–1027. 2019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Rosenthal M, Curry R, Reardon DA,
Rasmussen E, Upreti VV, Damore MA, Henary HA, Hill JS and Cloughesy
T: Safety, tolerability, and pharmacokinetics of anti-EGFRvIII
antibody-drug conjugate AMG 595 in patients with recurrent
malignant glioma expressing EGFRvIII. Cancer Chemother Pharmacol.
84:327–336. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Gedeon PC, Schaller TH, Chitneni SK, Choi
BD, Kuan CT, Suryadevara CM, Snyder DJ, Schmittling RJ, Szafranski
SE, Cui X, et al: A Rationally Designed Fully Human
EGFRvIII:CD3-Targeted Bispecific Antibody Redirects Human T Cells
to Treat Patient-derived Intracerebral Malignant Glioma. Clin
Cancer Res. 24:3611–3631. 2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Iurlaro R, Waldhauer I, Planas-Rigol E,
Bonfill-Teixidor E, Arias A, Nicolini V, Freimoser-Grundschoberet
A, Cuartus I, Martinez-Moreno A, Martínez-Ricarte F, et al: A Novel
EGFRvIII T-Cell Bispecific Antibody for the Treatment of
Glioblastoma. Mol Cancer Ther. 21:1499–1509. 2022. View Article : Google Scholar : PubMed/NCBI
|
50
|
Li F, Wu H, Du X, Sun Y, Rausseo BN,
Talukder A, Katailiha A, Elzohary L, Wang Y, Wang Z and Lizée G:
Epidermal growth factor receptor-targeted neoantigen peptide
vaccination for the treatment of non-small cell lung cancer and
glioblastoma. Vaccines (Basel). 11:14602023. View Article : Google Scholar : PubMed/NCBI
|
51
|
Chandramohan V, Bao X, Yu X, Parker S,
McDowall C, Yu YR, Healy P, Desjardins A, Gunn MD, Gromeier M, et
al: Improved efficacy against malignant brain tumors with
EGFRwt/EGFRvIII targeting immunotoxin and checkpoint inhibitor
combinations. J Immunother Cancer. 7:1422019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Li MM, Hi YT, Liang JK, Guan XY, Ma NF and
Liu M: Cancer stem cell-mediated therapeutic resistance in
hepatocellular carcinoma. Hepatoma Res. 8:362022. View Article : Google Scholar
|
53
|
Sukowati CHC: Heterogeneity of hepatic
cancer stem cells. Adv Exp Med Biol. 1139:59–81. 2019. View Article : Google Scholar : PubMed/NCBI
|
54
|
Schulte LA, López-Gil JC, Sainz B Jr and
Hermann PC: The cancer stem cell in hepatocellular carcinoma.
Cancers (Basel). 12:6842020. View Article : Google Scholar : PubMed/NCBI
|
55
|
Jeng KS, Chang CF, Sheen IS, Jeng CJ and
Wang CH: Cellular and molecular biology of cancer stem cells of
hepatocellular carcinoma. Int J Mol Sci. 24:14172023. View Article : Google Scholar : PubMed/NCBI
|
56
|
Endo K and Terada T: Protein expression of
CD44 (standard and variant isoforms) in hepatocellular carcinoma:
Relationships with tumor grade, clinicopathologic parameters, p53
expression, and patient survival. J Hepatol. 32:78–84. 2000.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Noh CK, Wang HJ, Kim CM, Kim J, Yoon SY,
Lee GH, Jo HJ, Yang MJ, Kim SS, Hwang JC, et al: EpCAM as a
predictive marker of tumor recurrence and survival in patients who
underwent surgical resection for hepatocellular carcinoma.
Anticancer Res. 38:4101–4109. 2018. View Article : Google Scholar : PubMed/NCBI
|
58
|
Zhou L and Zhu Y: The EpCAM overexpression
is associated with clinicopathological significance and prognosis
in hepatocellular carcinoma patients: A systematic review and
meta-analysis. Int J Surg. 56:274–280. 2018. View Article : Google Scholar : PubMed/NCBI
|
59
|
Luo Y and Tan Y: Prognostic value of CD44
expression in patients with hepatocellular carcinoma:
Meta-analysis. Cancer Cell Int. 16:472016. View Article : Google Scholar : PubMed/NCBI
|
60
|
Akkol EK, Tatlı II, Karatoprak GŞ, Ağar
OT, Yücel Ç, Sobarzo-Sánchez E and Capasso R: Is emodin with
anticancer effects completely innocent? Two sides of the coin.
Cancers (Basel). 13:27332021. View Article : Google Scholar : PubMed/NCBI
|
61
|
Gao Y, Li Y, Zhu Y, Luo Q, Lu Y, Wen K, Du
B, Xi X and Li G: Emodin is a potential drug targeting
CD44-positive hepatocellular cancer. Curr Cancer Drug Targets.
24:510–518. 2024. View Article : Google Scholar : PubMed/NCBI
|