Interactions between ferroptosis and tumour development mechanisms: Implications for gynaecological cancer therapy (Review)
- Authors:
- Peiting Wu
- Jianlin Chen
- Hui Li
- Haiyuan Lu
- Yukun Li
- Juan Zhang
-
Affiliations: Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan 410013, P.R. China, Department of Assisted Reproductive Centre, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China, Department of Clinical Laboratory Department, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China - Published online on: December 5, 2024 https://doi.org/10.3892/or.2024.8851
- Article Number: 18
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Torre LA, Islami F, Siegel RL, Ward EM and Jemal A: Global cancer in women: Burden and trends. Cancer Epidemiol Biomarkers Prev. 26:444–457. 2017. View Article : Google Scholar : PubMed/NCBI | |
Abu Samaan TM, Samec M, Liskova A, Kubatka P and Büsselberg D: Paclitaxel's mechanistic and clinical effects on breast cancer. Biomolecules. 9:7892019. View Article : Google Scholar : PubMed/NCBI | |
Vu M, Yu J, Awolude OA and Chuang L: Cervical cancer worldwide. Curr Probl Cancer. 42:457–465. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ledermann JA: Front-line therapy of advanced ovarian cancer: New approaches. Ann Oncol. 28 (Suppl_8):viii46–viii50. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fillon M: Opportunistic salpingectomy may reduce ovarian cancer risk. CA Cancer J Clin. 72:97–99. 2022. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A and Siegel RL: Ovarian cancer statistics, 2018. CA Cancer J Clin. 68:284–296. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mirza MR, Coleman RL, González-Martín A, Moore KN, Colombo N, Ray-Coquard I and Pignata S: The forefront of ovarian cancer therapy: Update on PARP inhibitors. Ann Oncol. 31:1148–1159. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kalampokas E, Giannis G, Kalampokas T, Papathanasiou AA, Mitsopoulou D, Tsironi E, Triantafyllidou O, Gurumurthy M, Parkin DE, Cairns M and Vlahos NF: Current approaches to the management of patients with endometrial cancer. Cancers (Basel). 14:45002022. View Article : Google Scholar : PubMed/NCBI | |
Brooks RA, Fleming GF, Lastra RR, Lee NK, Moroney JW, Son CH, Tatebe K and Veneris JL: Current recommendations and recent progress in endometrial cancer. CA Cancer J Clin. 69:258–279. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dolma S, Lessnick SL, Hahn WC and Stockwell BR: Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 3:285–296. 2003. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Conrad M and Pratt DA: The chemical basis of ferroptosis. Nat Chem Biol. 15:1137–1147. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yi J, Zhu J, Wu J, Thompson CB and Jiang X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 117:31189–31197. 2020. View Article : Google Scholar : PubMed/NCBI | |
Friedmann Angeli JP, Krysko DV and Conrad M: Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 19:405–414. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mao X, Liu K, Shen S, Meng L and Chen S: Ferroptosis, a new form of cell death: Mechanisms, biology and role in gynecological malignant tumor. Am J Cancer Res. 13:2751–2762. 2023.PubMed/NCBI | |
Chen Z, Han F, Du Y, Shi H and Zhou W: Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 8:702023. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K and Adam V: Hypoxia-inducible factors: Master regulators of hypoxic tumor immune escape. J Hematol Oncol. 15:772022. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Pharmacologic targeting of Hypoxia-inducible factors. Annu Rev Pharmacol Toxicol. 59:379–403. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fuhrmann DC, Mondorf A, Beifuß J, Jung M and Brüne B: Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 36:1016702020. View Article : Google Scholar : PubMed/NCBI | |
Fuhrmann DC and Brüne B: A graphical journey through iron metabolism, microRNAs, and hypoxia in ferroptosis. Redox Biol. 54:1023652022. View Article : Google Scholar : PubMed/NCBI | |
Feng X, Wang S, Sun Z, Dong H, Yu H, Huang M and Gao X: Ferroptosis enhanced diabetic renal tubular injury via HIF-1α/HO-1 pathway in db/db mice. Front Endocrinol (Lausanne). 12:6263902021. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Wei C, Liu G, Zhang L, Li J, Li L, Cai S and Fang L: Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif. 55:e131582022. View Article : Google Scholar : PubMed/NCBI | |
Liu XJ, Lv YF, Cui WZ, Li Y, Liu Y, Xue YT and Dong F: Icariin inhibits hypoxia/reoxygenation-induced ferroptosis of cardiomyocytes via regulation of the Nrf2/HO-1 signaling pathway. FEBS Open Bio. 11:2966–2976. 2021. View Article : Google Scholar : PubMed/NCBI | |
Adrover JM, McDowell SAC, He XY, Quail DF and Egeblad M: NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell. 41:505–526. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ge W and Wu W: Influencing Factors and significance of Tumor-associated Macrophage polarization in tumor microenvironment. Zhongguo Fei Ai Za Zhi. 26:228–237. 2023.(In Chinese). PubMed/NCBI | |
Hernansanz-Agustín P, Choya-Foces C, Carregal-Romero S, Ramos E, Oliva T, Villa-Piña T, Moreno L, Izquierdo-Álvarez A, Cabrera-García JD, Cortés A, et al: Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature. 586:287–291. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jung J, Zhang Y, Celiku O, Zhang W, Song H, Williams BJ, Giles AJ, Rich JN, Abounader R, Gilbert MR and Park DM: Mitochondrial NIX promotes tumor survival in the hypoxic niche of glioblastoma. Cancer Res. 79:5218–5232, 20193. View Article : Google Scholar : PubMed/NCBI | |
Kuo CL, Ponneri Babuharisankar A, Lin YC, Lien HW, Lo YK, Chou HY, Tangeda V, Cheng LC, Cheng AN and Lee AY: Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: Foe or friend? J Biomed Sci. 29:742022. View Article : Google Scholar : PubMed/NCBI | |
Xiao C, Wang X, Li S, Zhang Z, Li J, Deng Q, Chen X, Yang X and Li Z: A cuproptosis-based nanomedicine suppresses triple negative breast cancers by regulating tumor microenvironment and eliminating cancer stem cells. Biomaterials. 313:1227632025. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G and Stockwell BR: Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 10:1604–1609. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Li X, Zhang X, Kang R and Tang D: Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun. 478:1338–1343. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020. View Article : Google Scholar : PubMed/NCBI | |
Koleini N, Shapiro JS, Geier J and Ardehali H: Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. J Clin Invest. 131:e1486712021. View Article : Google Scholar : PubMed/NCBI | |
Luck AN and Mason AB: Transferrin-mediated cellular iron delivery. Curr Top Membr. 69:3–35. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yambire KF, Rostosky C, Watanabe T, Pacheu-Grau D, Torres-Odio S, Sanchez-Guerrero A, Senderovich O, Meyron-Holtz EG, Milosevic I, Frahm J, et al: Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo. Elife. 8:e510312019. View Article : Google Scholar : PubMed/NCBI | |
Zhang DD: Ironing out the details of ferroptosis. Nat Cell Biol. 26:1386–1393. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Yu C, Kang R, Kroemer G and Tang D: Cellular degradation systems in ferroptosis. Cell Death Differ. 28:1135–1148. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Kang R and Tang D: Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 289:7038–7050. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ and Zoncu R: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Bermudez J and Birsoy K: A mitochondrial gatekeeper that helps cells escape death by ferroptosis. Nature. 593:514–515. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Zhou X, Xie F and Zhang L, Yan H, Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond). 42:88–116. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, et al: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 447:864–868. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yang WS and Stockwell BR: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 15:234–245. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tomaskova Z, Gaburjakova J, Brezova A and Gaburjakova M: Inhibition of anion channels derived from mitochondrial membranes of the rat heart by stilbene disulfonate-DIDS. J Bioenerg Biomembr. 39:301–311. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xue X, Ramakrishnan SK, Weisz K, Triner D, Xie L, Attili D, Pant A, Győrffy B, Zhan M, Carter-Su C, et al: Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab. 24:447–461. 2016. View Article : Google Scholar : PubMed/NCBI | |
Song Q, Peng S, Sun Z, Heng X and Zhu X: Temozolomide drives ferroptosis via a DMT1-Dependent pathway in glioblastoma cells. Yonsei Med J. 62:843–849. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Lama R, Galster SL, Inigo JR, Wu J, Chandra D, Chemler SR and Wang X: Small-Molecule MMRi62 induces ferroptosis and inhibits metastasis in pancreatic cancer via degradation of ferritin heavy chain and mutant p53. Mol Cancer Ther. 21:535–545. 2022. View Article : Google Scholar : PubMed/NCBI | |
Feng J, Lu PZ, Zhu GZ, Hooi SC, Wu Y, Huang XW, Dai HQ, Chen PH, Li ZJ, Su WJ, et al: ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol Sin. 42:160–170. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wenz C, Faust D, Linz B, Turmann C, Nikolova T, Bertin J, Gough P, Wipf P, Schröder AS, Krautwald S and Dietrich C: t-BuOOH induces ferroptosis in human and murine cell lines. Arch Toxicol. 92:759–775. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF and Clish CB: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H and Yuan J: Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 116:2996–3005. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yoshioka H, Kawamura T, Muroi M, Kondoh Y, Honda K, Kawatani M, Aono H, Waldmann H, Watanabe N and Osada H: Identification of a small molecule that enhances ferroptosis via inhibition of ferroptosis suppressor protein 1 (FSP1). ACS Chem Biol. 17:483–491. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yin W, Yang Z, Sun J, Chang J, Huang L, Xue L, Zhang X, Zhi H, Chen S, et al: Nanotechnology-enabled M2 macrophage polarization and ferroptosis inhibition for targeted inflammatory bowel disease treatment. J Control Release. 367:339–353. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, et al: CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 19:432020. View Article : Google Scholar : PubMed/NCBI | |
Ishii T, Bannai S and Sugita Y: Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J Biol Chem. 256:12387–12392. 1981. View Article : Google Scholar : PubMed/NCBI | |
Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 3:23–35. 2003. View Article : Google Scholar : PubMed/NCBI | |
Murdoch C, Giannoudis A and Lewis CE: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 104:2224–2234. 2004. View Article : Google Scholar : PubMed/NCBI | |
Boutilier AJ and Elsawa SF: Macrophage polarization states in the tumor microenvironment. Int J Mol Sci. 22:69952021. View Article : Google Scholar : PubMed/NCBI | |
Yin M, Li X, Tan S, Zhou HJ, Ji W, Bellone S, Xu X, Zhang H, Santin AD, Lou G and Min W: Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Invest. 126:4157–4173. 2016. View Article : Google Scholar : PubMed/NCBI | |
Recalcati S, Locati M, Gammella E, Invernizzi P and Cairo G: Iron levels in polarized macrophages: Regulation of immunity and autoimmunity. Autoimmun Rev. 11:883–889. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gu Z, Liu T, Liu C, Yang Y, Tang J, Song H, Wang Y, Yang Y and Yu C: Ferroptosis-strengthened metabolic and inflammatory regulation of Tumor-associated macrophages provokes potent tumoricidal activities. Nano Lett. 21:6471–6479. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hao X, Zheng Z, Liu H, Zhang Y, Kang J, Kong X, Rong D, Sun G, Sun G, Liu L, et al: Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol. 56:1024632022. View Article : Google Scholar : PubMed/NCBI | |
Li LG, Peng XC, Yu TT, Xu HZ, Han N, Yang XX, Li QR, Hu J, Liu B, Yang ZY, et al: Dihydroartemisinin remodels macrophage into an M1 phenotype via ferroptosis-mediated DNA damage. Front Pharmacol. 13:9498352022. View Article : Google Scholar : PubMed/NCBI | |
Recalcati S, Locati M, Marini A, Santambrogio P, Zaninotto F, De Pizzol M, Zammataro L, Girelli D and Cairo G: Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol. 40:824–835. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao YY, Lian JX, Lan Z, Zou KL, Wang WM and Yu GT: Ferroptosis promotes anti-tumor immune response by inducing immunogenic exposure in HNSCC. Oral Dis. 29:933–941. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zuo F, Zhang K, Xia T, Lei W, Zhang Z, Bao L and You Y: Exosomal MIF derived from nasopharyngeal carcinoma promotes metastasis by repressing ferroptosis of macrophages. Front Cell Dev Biol. 9:7911872021. View Article : Google Scholar : PubMed/NCBI | |
Jakubczyk K, Dec K, Kałduńska J, Kawczuga D, Kochman J and Janda K: Reactive oxygen species-sources, functions, oxidative damage. Pol Merkur Lekarski. 48:124–127. 2020.PubMed/NCBI | |
Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, Liao P, Lang X, Kryczek I, Sell A, et al: CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 569:270–274. 2019. View Article : Google Scholar : PubMed/NCBI | |
Haschka D, Hoffmann A and Weiss G: Iron in immune cell function and host defense. Semin Cell Dev Biol. 115:27–36. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wen ZF, Liu H, Gao R, Zhou M, Ma J, Zhang Y, Zhao J, Chen Y, Zhang T, Huang F, et al: Tumor cell-released autophagosomes (TRAPs) promote immunosuppression through induction of M2-like macrophages with increased expression of PD-L1. J Immunother Cancer. 6:1512018. View Article : Google Scholar : PubMed/NCBI | |
Farhood B, Najafi M and Mortezaee K: CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Guo J, Yu N, Liu Y, Song H, Niu J and Gu Y: Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model. Life Sci. 261:1184872020. View Article : Google Scholar : PubMed/NCBI | |
Carmona-Cuenca I, Roncero C, Sancho P, Caja L, Fausto N, Fernández M and Fabregat I: Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity. J Hepatol. 49:965–976. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Xing R, Li C, Liu Y, Sun L, Liu X and Wang Y: Active immunization with Tocilizumab mimotopes induces specific immune responses. BMC Biotechnol. 15:462015. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Wang D, Xiao T, Gu W, Yang H, Yang M and Wang H: ACSL4 promotes ferroptosis and M1 macrophage polarization to regulate the tumorigenesis of nasopharyngeal carcinoma. Int Immunopharmacol. 122:1106292023. View Article : Google Scholar : PubMed/NCBI | |
Puylaert P, Roth L, Van Praet M, Pintelon I, Dumitrascu C, van Nuijs A, Klejborowska G, Guns PJ, Berghe TV, Augustyns K, et al: Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques. Angiogenesis. 26:505–522. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X and Shi S: Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 13:1102020. View Article : Google Scholar : PubMed/NCBI | |
Wen Q, Liu J, Kang R, Zhou B and Tang D: The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 510:278–283. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky DJ, Zeh HJ, Kang R, Wang J and Tang D: Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 16:2069–2083. 2020. View Article : Google Scholar : PubMed/NCBI | |
Takei H, Araki A, Watanabe H, Ichinose A and Sendo F: Rapid killing of human neutrophils by the potent activator phorbol 12-myristate 13-acetate (PMA) accompanied by changes different from typical apoptosis or necrosis. J Leukoc Biol. 59:229–240. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V and Zychlinsky A: Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 176:231–241. 2007. View Article : Google Scholar : PubMed/NCBI | |
Papayannopoulos V and Zychlinsky A: NETs: A new strategy for using old weapons. Trends Immunol. 30:513–521. 2009. View Article : Google Scholar : PubMed/NCBI | |
Monti M, De Rosa V, Iommelli F, Carriero MV, Terlizzi C, Camerlingo R, Di Minno G and Del Vecchio S: Neutrophil extracellular traps as an adhesion substrate for different tumor cells expressing RGD-Binding integrins. Int J Mol Sci. 19:23502018. View Article : Google Scholar : PubMed/NCBI | |
Pieterse E, Rother N, Garsen M, Hofstra JM, Satchell SC, Hoffmann M, Loeven MA, Knaapen HK, van der Heijden OWH, Berden JHM, et al: Neutrophil extracellular traps drive Endothelial-to-mesenchymal transition. Arterioscler Thromb Vasc Biol. 37:1371–1379. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Cong M, Li J, He D, Wu Q, Tian P, Wang Y, Yang S, Liang C, Liang Y, et al: Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell. 39:423–437.e7. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xia X, Zhang Z, Zhu C, Ni B, Wang S, Yang S, Yu F, Zhao E, Li Q and Zhao G: Neutrophil extracellular traps promote metastasis in gastric cancer patients with postoperative abdominal infectious complications. Nat Commun. 13:10172022. View Article : Google Scholar : PubMed/NCBI | |
Awasthi D and Sarode A: Neutrophils at the crossroads: Unraveling the multifaceted role in the tumor microenvironment. Int J Mol Sci. 25:29292024. View Article : Google Scholar : PubMed/NCBI | |
Li C, Chen T, Liu J, Wang Y, Zhang C, Guo L, Shi D, Zhang T, Wang X and Li J: FGF19-induced inflammatory CAF promoted neutrophil extracellular trap formation in the liver metastasis of colorectal cancer. Adv Sci (Weinh). 10:e23026132023. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, Huang D, Li J, Li H, Chen F, et al: DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature. 583:133–138. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lee W, Ko SY, Mohamed MS, Kenny HA, Lengyel E and Naora H: Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J Exp Med. 216:176–194. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aldabbous L, Abdul-Salam V, McKinnon T, Duluc L, Pepke-Zaba J, Southwood M, Ainscough AJ, Hadinnapola C, Wilkins MR, Toshner M and Wojciak-Stothard B: Neutrophil extracellular traps promote angiogenesis: Evidence from vascular pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol. 36:2078–2087. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wu D, Wang Y, Guo K, Spencer CB, Ortoga L, Qu M, Shi Y, Shao Y, Wang Z, et al: METTL3-mediated N6-methyladenosine exacerbates ferroptosis via m6A-IGF2BP2-dependent mitochondrial metabolic reprogramming in sepsis-induced acute lung injury. Clin Transl Med. 13:e13892023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Ertl HC: Starved and Asphyxiated: How Can CD8(+) T cells within a tumor microenvironment prevent tumor progression. Front Immunol. 7:322016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Song M, Zhang B and Zhang Y: Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid Med Cell Longev. 2016:15809672016. View Article : Google Scholar : PubMed/NCBI | |
Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, Scadden DT and Wagner DD: Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA. 109:13076–13081. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yao L, Sheng X, Dong X, Zhou W, Li Y, Ma X, Song Y, Dai H and Du Y: Neutrophil extracellular traps mediate TLR9/Merlin axis to resist ferroptosis and promote triple negative breast cancer progression. Apoptosis. 28:1484–1495. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang W: The mitophagy receptor FUN14 domain-containing 1 (FUNDC1): A promising biomarker and potential therapeutic target of human diseases. Genes Dis. 8:640–654. 2021. View Article : Google Scholar : PubMed/NCBI | |
Al-Faze R, Ahmed HA, El-Atawy MA, Zagloul H, Alshammari EM, Jaremko M, Emwas AH, Nabil GM and Hanna DH: Mitochondrial dysfunction route as a possible biomarker and therapy target for human cancer. Biomed J. March 5–2024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Sugioka R, Shimizu S and Tsujimoto Y: Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem. 279:52726–52734. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chen QM: Nrf2 for protection against oxidant generation and mitochondrial damage in cardiac injury. Free Radic Biol Med. 179:133–143. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tian C, Liu Y, Li Z, Zhu P and Zhao M: Mitochondria related cell death modalities and disease. Front Cell Dev Biol. 10:8323562022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang X, Huang Z, Zhou Y, Xia J, Hu W, Wang X, Du J, Tong X and Wang Y: CISD3 inhibition drives cystine-deprivation induced ferroptosis. Cell Death Dis. 12:8392021. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Zhang Q, Liu H, Liu J, Yang S, Luo X, Liu W, Zheng H, Liu Q, Cui Y, et al: Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov. 8:402022. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Cao W, Ren Y, Zhang Q and Liu J: ATPase copper transporter A, negatively regulated by miR-148a-3p, contributes to cisplatin resistance in breast cancer cells. Clin Transl Med. 10:57–73. 2020. View Article : Google Scholar : PubMed/NCBI | |
Finney L, Mandava S, Ursos L, Zhang W, Rodi D, Vogt S, Legnini D, Maser J, Ikpatt F and Olopade OI: X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc Natl Acad Sci USA. 104:2247–2252. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lopez J, Ramchandani D and Vahdat L: Copper depletion as a therapeutic strategy in cancer. Met Ions Life Sci. 303–330. 2019.PubMed/NCBI | |
Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K and Petris MJ: Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res. 1868:1188932021. View Article : Google Scholar : PubMed/NCBI | |
Lossow K, Schwarz M and Kipp AP: Are trace element concentrations suitable biomarkers for the diagnosis of cancer? Redox Biol. 42:1019002021. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Min J and Wang F: Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 7:3782022. View Article : Google Scholar : PubMed/NCBI | |
Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, et al: Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 15:681–689. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mayr JA, Feichtinger RG, Tort F, Ribes A and Sperl W: Lipoic acid biosynthesis defects. J Inherit Metab Dis. 37:553–563. 2014. View Article : Google Scholar : PubMed/NCBI | |
Solmonson A and DeBerardinis RJ: Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem. 293:7522–7530. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brewer GJ, Askari F, Lorincz MT, Carlson M, Schilsky M, Kluin KJ, Hedera P, Moretti P, Fink JK, Tankanow R, et al: Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol. 63:521–527. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen T, Liang L, Wang Y, Li X and Yang C: Ferroptosis and cuproptposis in kidney diseases: Dysfunction of cell metabolism. Apoptosis. 29:289–302. 2024. View Article : Google Scholar : PubMed/NCBI | |
He B, Liao Y, Tian M, Tang C, Tang Q, Ma F, Zhou W, Leng Y and Zhong D: Identification and verification of a novel signature that combines cuproptosis-related genes with ferroptosis-related genes in osteoarthritis using bioinformatics analysis and experimental validation. Arthritis Res Ther. 26:1002024. View Article : Google Scholar : PubMed/NCBI | |
Luo G, Wang L, Zheng Z, Gao B and Lei C: Cuproptosis-related ferroptosis genes for predicting prognosis in kidney renal clear cell carcinoma. Eur J Med Res. 28:1762023. View Article : Google Scholar : PubMed/NCBI | |
Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, Kroemer G, Chen X, Tang D and Liu J: Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 19:1982–1996. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiong C, Ling H, Hao Q and Zhou X: Cuproptosis: A53-regulated metabolic cell death? Cell Death Differ. 30:876–884. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shao L, Zhu L, Su R, Yang C, Gao X, Xu Y, Wang H, Guo C and Li H: Baicalin enhances the chemotherapy sensitivity of oxaliplatin-resistant gastric cancer cells by activating p53-mediated ferroptosis. Sci Rep. 14:107452024. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W, Tseng YY, Deasy R, Kost-Alimova M, Dančík V, et al: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun. 10:16172019. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Qin H, Jiang B, Lu W, Hao J, Cao W, Du L, Chen W, Zhao X, Guo H, et al: KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett. 522:1–13. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, Anderson B, Burstein HJ, Chew H, Dang C, et al: Breast cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 20:691–722. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Zheng S, Xie X, Ye F, Hu X, Tian Z, Yan SM, Yang L, Kong Y, Tang Y, et al: N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 13:26722022. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Pan R, Lu J, Wu X, Xie J, Tang H and Li X: Development and verification of a prognostic Ferroptosis-related gene model in triple-negative breast cancer. Front Oncol. 12:8969272022. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Yang A, Chen B, Deng X, Xie J, Dai D, Zhang J, Tang H, Wu T, Zhou Z, et al: crVDAC3 alleviates ferroptosis by impeding HSPB1 ubiquitination and confers trastuzumab deruxtecan resistance in HER2-low breast cancer. Drug Resist Updat. 77:1011262024. View Article : Google Scholar : PubMed/NCBI | |
Giordano C, Chemi F, Panza S, Barone I, Bonofiglio D, Lanzino M, Cordella A, Campana A, Hashim A, Rizza P, et al: Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity. Oncotarget. 7:1262–1275. 2016. View Article : Google Scholar : PubMed/NCBI | |
Balaban S, Shearer RF, Lee LS, van Geldermalsen M, Schreuder M, Shtein HC, Cairns R, Thomas KC, Fazakerley DJ, Grewal T, et al: Adipocyte lipolysis links obesity to breast cancer growth: Adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer Metab. 5:12017. View Article : Google Scholar : PubMed/NCBI | |
He JY, Wei XH, Li SJ, Liu Y, Hu HL, Li ZZ, Kuang XH, Wang L, Shi X, Yuan ST and Sun L: Adipocyte-derived IL-6 and leptin promote breast Cancer metastasis via upregulation of Lysyl Hydroxylase-2 expression. Cell Commun Signal. 16:1002018. View Article : Google Scholar : PubMed/NCBI | |
Koundouros N and Poulogiannis G: Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 122:4–22. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bobiński R, Dutka M, Pizon M, Waksmańska W and Pielesz A: Ferroptosis, Acyl starvation, and breast cancer. Mol Pharmacol. 103:132–144. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pondé NF, Zardavas D and Piccart M: Progress in adjuvant systemic therapy for breast cancer. Nat Rev Clin Oncol. 16:27–44. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bi M, Zhang Z, Jiang YZ, Xue P, Wang H, Lai Z, Fu X, De Angelis C, Gong Y, Gao Z, et al: Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nat Cell Biol. 22:701–715. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Wang X, Sun W, Xu F, Kou H, Hu W, Zhang Y, Jiang Q, Tang J and Xu Y: RelB-activated GPX4 inhibits ferroptosis and confers tamoxifen resistance in breast cancer. Redox Biol. 68:1029522023. View Article : Google Scholar : PubMed/NCBI | |
He HL, Lee YE, Chen HP, Hsing CH, Chang IW, Shiue YL, Lee SW, Hsu CT, Lin LC, Wu TF and Li CF: Overexpression of DNAJC12 predicts poor response to neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Exp Mol Pathol. 98:338–345. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shen M, Cao S, Long X, Xiao L, Yang L, Zhang P, Li L, Chen F, Lei T, Gao H, et al: DNAJC12 causes breast cancer chemotherapy resistance by repressing doxorubicin-induced ferroptosis and apoptosis via activation of AKT. Redox Biol. 70:1030352024. View Article : Google Scholar : PubMed/NCBI | |
Bianchini G, Balko JM, Mayer IA, Sanders ME and Gianni L: Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 13:674–690. 2016. View Article : Google Scholar : PubMed/NCBI | |
Denkert C, Liedtke C, Tutt A and von Minckwitz G: Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet. 389:2430–2442. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Ma D, Zhao S, Suo C, Shi J, Xue MZ, Ruan M, Wang H, Zhao J, Li Q, et al: Multi-Omics Profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of Triple-negative breast cancer. Clin Cancer Res. 25:5002–5014. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Yang C, Jian L, Guo S, Chen R, Li K, Qu F, Tao K, Fu Y, Luo F and Liu S: Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep. 42:826–838. 2019.PubMed/NCBI | |
Timmerman LA, Holton T, Yuneva M, Louie RJ, Padró M, Daemen A, Hu M, Chan DA, Ethier SP, van ‘t Veer LJ, et al: Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell. 24:450–465. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Dong J, Tian W, Qiao S and Wang H: Role of TRPV1 ion channel in cervical squamous cell carcinoma genesis. Front Mol Biosci. 9:9802622022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li L, Yang Z, Wen D and Hu Z: Circular RNA circACAP2 suppresses ferroptosis of cervical cancer during malignant progression by miR-193a-5p/GPX4. J Oncol. 2022:52288742022.PubMed/NCBI | |
Wu P, Li C, Ye DM, Yu K, Li Y, Tang H, Xu G, Yi S and Zhang Z: Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis. Aging (Albany NY). 13:4663–4673. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiong J, Nie M, Fu C, Chai X, Zhang Y, He L and Sun S: Hypoxia enhances HIF1α transcription activity by Upregulating KDM4A and mediating H3K9me3, thus inducing ferroptosis resistance in cervical cancer cells. Stem Cells Int. 2022:16088062022. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Fang B, Yang XQ, Wang L, Chen D, Krasnykh V, Carter BZ, Morris JS and Shureiqi I: Therapeutic molecular targeting of 15-lipoxygenase-1 in colon cancer. Mol Ther. 16:886–892. 2008. View Article : Google Scholar | |
Abdurahman A, Li Y, Jia SZ, Xu XW, Lin SJ, Ouyang P, Jun He Z, Zhang ZH, Liu Q, Xu Y and Song GL: Knockdown of the SELENOK gene induces ferroptosis in cervical cancer cells. Metallomics. 15:mfad0192023. View Article : Google Scholar : PubMed/NCBI | |
Ray Chaudhuri A and Nussenzweig A: The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 18:610–621. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Quesada C, López-Biedma A and Gaforio JJ: Oleanolic acid, a compound present in grapes and olives, protects against genotoxicity in human mammary epithelial cells. Molecules. 20:13670–13688. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Xiong L, Yan G, Du S, Liu J and Shi Y: Susceptibility of cervical cancer to dihydroartemisinin-induced ferritinophagy-dependent ferroptosis. Front Mol Biosci. 10:11560622023. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Zhang HL, Li J, Ye ZP, Du T, Li LC, Guo YQ, Yang D, Li ZL, Cao JH, et al: Tubastatin A potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis. Redox Biol. 62:1026772023. View Article : Google Scholar : PubMed/NCBI | |
Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lheureux S, Gourley C, Vergote I and Oza AM: Epithelial ovarian cancer. Lancet. 393:1240–1253. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Ouyang F, Gao A, Zeng T, Li M, Li H, Zhou W, Gao Q, Tang X, Zhang Q, et al: ESM1 enhances fatty acid synthesis and vascular mimicry in ovarian cancer by utilizing the PKM2-dependent Warburg effect within the hypoxic tumor microenvironment. Mol Cancer. 23:942024. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Ye M, Liu D, Zhou W, Zeng T, He S and Li Y: Lactate drives the ESM1-SCD1 axis to inhibit the antitumor CD8+ T-cell response by activating the Wnt/β-catenin pathway in ovarian cancer cells and inducing cisplatin resistance. Int Immunopharmacol. 137:1124612024. View Article : Google Scholar : PubMed/NCBI | |
Li YK, Gao AB, Zeng T, Liu D, Zhang QF, Ran XM, Tang ZZ, Li Y, Liu J, Zhang T, et al: ANGPTL4 accelerates ovarian serous cystadenocarcinoma carcinogenesis and angiogenesis in the tumor microenvironment by activating the JAK2/STAT3 pathway and interacting with ESM1. J Transl Med. 22:462024. View Article : Google Scholar : PubMed/NCBI | |
Christie EL and Bowtell DDL: Acquired chemotherapy resistance in ovarian cancer. Ann Oncol. 28 (Suppl_8):viii13–viii5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ruan D, Wen J, Fang F, Lei Y, Zhao Z and Miao Y: Ferroptosis in epithelial ovarian cancer: A burgeoning target with extraordinary therapeutic potential. Cell Death Discov. 9:4342023. View Article : Google Scholar : PubMed/NCBI | |
Fu R, Zhao B, Chen M, Fu X, Zhang Q, Cui Y, Fu X, Li R, Zhong G and Zhou X: Moving beyond cisplatin resistance: mechanisms, challenges, and prospects for overcoming recurrence in clinical cancer therapy. Med Oncol. 41:92023. View Article : Google Scholar : PubMed/NCBI | |
Lv C, Qu H, Zhu W, Xu K, Xu A, Jia B, Qing Y, Li H, Wei HJ and Zhao HY: Low-dose paclitaxel inhibits tumor cell growth by regulating glutaminolysis in colorectal carcinoma cells. Front Pharmacol. 8:2442017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao G, Condello S, Huang H, Cardenas H, Tanner EJ, Wei J, Ji Y, Li J, Tan Y, et al: Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 81:384–399. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi M, Zhang MJ, Yu Y, Ou R, Wang Y, Li H and Ge RS: Curcumin derivative NL01 induces ferroptosis in ovarian cancer cells via HCAR1/MCT1 signaling. Cell Signal. 109:1107912023. View Article : Google Scholar : PubMed/NCBI | |
Cheng Q, Bao L, Li M, Chang K and Yi X: Erastin synergizes with cisplatin via ferroptosis to inhibit ovarian cancer growth in vitro and in vivo. J Obstet Gynaecol Res. 47:2481–2491. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ni M, Zhou J, Zhu Z, Xu Q, Yin Z, Wang Y, Zheng Z and Zhao H: Shikonin and cisplatin synergistically overcome cisplatin resistance of ovarian cancer by inducing ferroptosis via upregulation of HMOX1 to promote Fe2+ accumulation. Phytomedicine. 112:1547012023. View Article : Google Scholar : PubMed/NCBI | |
Krishnakumar R and Kraus WL: The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets. Mol Cell. 39:8–24. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gibson BA and Kraus WL: New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol. 13:411–424. 2012. View Article : Google Scholar : PubMed/NCBI | |
Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, et al: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: A proof-of-concept trial. Lancet. 376:245–251. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alsop K, Fereday S, Meldrum C, deFazio A, Emmanuel C, George J, Dobrovic A, Birrer MJ, Webb PM, Stewart C, et al: BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: A report from the Australian Ovarian Cancer Study Group. J Clin Oncol. 30:2654–2663. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, Zhao Y, Zhang Y and Wang J: PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 42:1019282021. View Article : Google Scholar : PubMed/NCBI | |
Tang S, Shen Y, Wei X, Shen Z, Lu W and Xu J: Olaparib synergizes with arsenic trioxide by promoting apoptosis and ferroptosis in platinum-resistant ovarian cancer. Cell Death Dis. 13:8262022. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Zhang T and Chen Z: Solute carrier family 7 member 11 (SLC7A11) is a potential prognostic biomarker in uterine corpus endometrial carcinoma. Int J Gen Med. 16:481–497. 2023. View Article : Google Scholar : PubMed/NCBI | |
Marshall AD, van Geldermalsen M, Otte NJ, Lum T, Vellozzi M, Thoeng A, Pang A, Nagarajah R, Zhang B, Wang Q, et al: ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogenesis. 6:e3672017. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Olszewski K, Zhang Y, Lim EW, Shi J, Zhang X, Zhang J, Lee H, Koppula P, Lei G, et al: Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol. 22:476–486. 2020. View Article : Google Scholar : PubMed/NCBI | |
Byrne FL, Poon IK, Modesitt SC, Tomsig JL, Chow JD, Healy ME, Baker WD, Atkins KA, Lancaster JM, Marchion DC, et al: Metabolic vulnerabilities in endometrial cancer. Cancer Res. 74:5832–5845. 2014. View Article : Google Scholar : PubMed/NCBI | |
Han X, Ren C, Yang T, Qiao P, Wang L, Jiang A, Meng Y, Liu Z, Du Y and Yu Z: Negative regulation of AMPKα1 by PIM2 promotes aerobic glycolysis and tumorigenesis in endometrial cancer. Oncogene. 38:6537–6549. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Jiang XY, Zheng RR, Zuo SJ, Zhao LP, Fan GL, Xie BR, Yu XY, Li SY and Zhang XZ: A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials. 195:75–85. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Chen Z, Zeng X, Chen X and Gu Z: Advances in nanomedicine for cancer starvation therapy. Theranostics. 9:8026–8047. 2019. View Article : Google Scholar : PubMed/NCBI | |
Murakami H, Hayashi M, Terada S and Ohmichi M: Medroxyprogesterone acetate-resistant endometrial cancer cells are susceptible to ferroptosis inducers. Life Sci. 325:1217532023. View Article : Google Scholar : PubMed/NCBI | |
Zhang YY, Ni ZJ, Elam E, Zhang F, Thakur K, Wang S, Zhang JG and Wei ZJ: Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells. Food Funct. 12:4947–4959. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hua Y, Yang S, Zhang Y, Li J, Wang M, Yeerkenbieke P, Liao Q and Liu Q: Modulating ferroptosis sensitivity: Environmental and cellular targets within the tumor microenvironment. J Exp Clin Cancer Res. 43:192024. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Wang H and Liu Y: NETosis: Sculpting tumor metastasis and immunotherapy. Immunol Rev. 321:263–279. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Liu J, Zhou Y, Qu M, Wang Y, Guo K, Shen R, Sun Z, Cata JP, Yang S, et al: Neutrophil extracellular traps mediate m6A modification and regulates sepsis-associated acute lung injury by activating ferroptosis in alveolar epithelial cells. Int J Biol Sci. 18:3337–3357. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chu C, Wang X, Yang C, Chen F, Shi L, Xu W, Wang K, Liu B, Wang C, Sun D and Ding W: Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing Fundc1-dependent mitophagy. Redox Biol. 67:1029062023. View Article : Google Scholar : PubMed/NCBI | |
Medlock AE, Hixon JC, Bhuiyan T and Cobine PA: Prime real estate: Metals, cofactors and MICOS. Front Cell Dev Biol. 10:8923252022. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Yang Y, Gao Y and He J: Cuproptosis: Mechanisms and links with cancers. Mol Cancer. 22:462023. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Lu K, Jiang X, Wei Q, Zhu L, Wang X, Jin H and Feng L: Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer. J Exp Clin Cancer Res. 42:1422023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X and Chen G: Iron and copper: Critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal. 21:3272023. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, Wang SB, Feng J and Zhang XZ: Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano. 12:12181–12192. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS and Stockwell BR: Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Zhang X, Yang M and Dong X: Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Jia Z, Zhang J, Pan X, Wei Y, Ma S, Yang N, Liu Z and Shen Q: Metabolic intervention nanoparticles for triple-negative breast cancer therapy via overcoming FSP1-mediated ferroptosis resistance. Adv Healthc Mater. 11:e21027992022. View Article : Google Scholar : PubMed/NCBI | |
Radadiya PS, Thornton MM, Puri RV, Yerrathota S, Dinh-Phan J, Magenheimer B, Subramaniam D, Tran PV, Zhu H, Bolisetty S, et al: Ciclopirox olamine induces ferritinophagy and reduces cyst burden in polycystic kidney disease. JCI Insight. 6:e1412992021. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Zhang Y, Hao J, Duan HQ, Zhao CX, Sun C, Li B, Fan BY, Wang X, Li WX, et al: Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen Res. 14:532–541. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, Zhang J, Liu S and Li R: Nanoparticle-induced ferroptosis: Detection methods, mechanisms and applications. Nanoscale. 13:2266–2285. 2021. View Article : Google Scholar : PubMed/NCBI | |
Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ and Mercurio AM: Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 51:575–586.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu H and Liu A: Long non-coding RNA NEAT1 regulates ferroptosis sensitivity in non-small-cell lung cancer. J Int Med Res. 49:3000605219961832021. View Article : Google Scholar : PubMed/NCBI | |
Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279.e25. 2019. View Article : Google Scholar : PubMed/NCBI |