
Bone metastases of prostate cancer: Molecular mechanisms, targeted diagnosis and targeted therapy (Review)
- Authors:
- Xutang Guo
- Shaojun Li
-
Affiliations: Department of Urology, Gansu Province Maternity and Child Health Hospital, Lanzhou, Gansu 730000, P.R. China - Published online on: February 18, 2025 https://doi.org/10.3892/or.2025.8879
- Article Number: 46
-
Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI | |
Simmons JK, Hildreth BE III, Supsavhad W, Elshafae SM, Hassan BB, Dirksen WP, Toribio RE and Rosol TJ: Animal models of bone metastasis. Vet Pathol. 52:827–841. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang SH, Kao YH, Muller CJF, Joubert E and Chuu CP: Aspalathin-rich green Aspalathus linearis extract suppresses migration and invasion of human castration-resistant prostate cancer cells via inhibition of YAP signaling. Phytomedicine. 69:1532102020. View Article : Google Scholar : PubMed/NCBI | |
Gebrael G, Fortuna GG, Sayegh N, Swami U and Agarwal N: Advances in the treatment of metastatic prostate cancer. Trends Cancer. 9:840–854. 2023. View Article : Google Scholar : PubMed/NCBI | |
Skotheim RI, Bogaard M, Carm KT, Axcrona U and Axcrona K: Prostate cancer: Molecular aspects, consequences, and opportunities of the multifocal nature. Biochim Biophys Acta Rev Cancer. 1879:1890802024. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Zou H, Wang H, Li Q and Yu D: Identification of key gene signatures associated with bone metastasis in castration-resistant prostate cancer using co-expression analysis. Front Oncol. 10:5715242020. View Article : Google Scholar : PubMed/NCBI | |
Qu L, Li S, Zhuo Y, Chen J, Qin X and Guo G: Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncol Lett. 14:7467–7472. 2017.PubMed/NCBI | |
Morale MG, Tamura RE and Rubio IGS: Metformin and cancer hallmarks: Molecular mechanisms in thyroid, prostate and head and neck cancer models. Biomolecules. 12:3572022. View Article : Google Scholar : PubMed/NCBI | |
Chi JT, Lin PH, Tolstikov V, Oyekunle T, Chen EY, Bussberg V, Greenwood B, Sarangarajan R, Narain NR, Kiebish MA and Freedland SJ: Metabolomic effects of androgen deprivation therapy treatment for prostate cancer. Cancer Med. 9:3691–3702. 2020. View Article : Google Scholar : PubMed/NCBI | |
Salji M, Hendry J, Patel A, Ahmad I, Nixon C and Leung HY: Peri-prostatic fat volume measurement as a predictive tool for castration resistance in advanced prostate cancer. Eur Urol Focus. 4:858–866. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Jin M, Park SJ, Seo SY and Jeong KW: SETD1A promotes proliferation of castration-resistant prostate cancer cells via FOXM1 transcription. Cancers (Basel). 12:17362020. View Article : Google Scholar : PubMed/NCBI | |
Boopathi E, Birbe R, Shoyele SA, Den RB and Thangavel C: Bone health management in the continuum of prostate cancer disease. Cancers (Basel). 14:43052022. View Article : Google Scholar : PubMed/NCBI | |
Talreja DB: Importance of antiresorptive therapies for patients with bone metastases from solid tumors. Cancer Manag Res. 4:287–297. 2012. View Article : Google Scholar : PubMed/NCBI | |
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB and Holen I: Bone metastasis: Mechanisms, therapies, and biomarkers. Physiol Rev. 101:797–855. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sgouros G, Bodei L, McDevitt MR and Nedrow JR: Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat Rev Drug Discov. 19:589–608. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lawal IO, Ndlovu H, Kgatle M, Mokoala KMG and Sathekge MM: Prognostic value of PSMA PET/CT in prostate cancer. Semin Nucl Med. 54:46–59. 2024. View Article : Google Scholar : PubMed/NCBI | |
Houshmand S, Lawhn-Heath C and Behr S: PSMA PET imaging in the diagnosis and management of prostate cancer. Abdom Radiol (NY). 48:3610–3623. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pyka T, Okamoto S, Dahlbender M, Tauber R, Retz M, Heck M, Tamaki N, Schwaiger M, Maurer T and Eiber M: Comparison of bone scintigraphy and (68)Ga-PSMA PET for skeletal staging in prostate cancer. Eur J Nucl Med Mol Imaging. 43:2114–2121. 2016. View Article : Google Scholar : PubMed/NCBI | |
Harmon SA, Bergvall E, Mena E, Shih JH, Adler S, McKinney Y, Mehralivand S, Citrin DE, Couvillon A, Madan RA, et al: A prospective comparison of 18F-sodium fluoride PET/CT and PSMA-Targeted 18F-DCFBC PET/CT in metastatic prostate cancer. J Nucl Med. 59:1665–1671. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luna A, Vilanova JC and Alcalá Mata L: Total body MRI in early detection of bone metastasis and its indication in comparison to bone scan and other imaging techniques. Arch Esp Urol. 68:371–390. 2015.(In Spanish). PubMed/NCBI | |
Kang J, La Manna F, Bonollo F, Sampson N, Alberts IL, Mingels C, Afshar-Oromieh A, Thalmann GN and Karkampouna S: Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett. 530:156–169. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Chen X, Yao K, Zhang Y, He H, Huang H, Chen H, Peng S, Huang M, Cheng L, et al: TSPAN18 facilitates bone metastasis of prostate cancer by protecting STIM1 from TRIM32-mediated ubiquitination. J Exp Clin Cancer Res. 42:1952023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Chen L, Fan Y, Hong Y, Yang X, Li Y, Lu J, Lv J, Pan X, Qu F, et al: IFITM3 promotes bone metastasis of prostate cancer cells by mediating activation of the TGF-β signaling pathway. Cell Death Dis. 10:5172019. View Article : Google Scholar : PubMed/NCBI | |
Abramovic I, Ulamec M, Katusic Bojanac A, Bulic-Jakus F, Jezek D and Sincic N: miRNA in prostate cancer: Challenges toward translation. Epigenomics. 12:543–558. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, Du H, Ren D, Dai Y and Peng X: m6A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med. 11:e4262021. View Article : Google Scholar : PubMed/NCBI | |
Li FX, Liu JJ, Xu F, Lin X, Zhong JY, Wu F and Yuan LQ: Role of tumor-derived exosomes in bone metastasis. Oncol Lett. 18:3935–3945. 2019.PubMed/NCBI | |
Yin J, Liu YN, Tillman H, Barrett B, Hewitt S, Ylaya K, Fang L, Lake R, Corey E, Morrissey C, et al: AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Res. 74:4306–4317. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Weng H and Chen J: m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer. Cancer Cell. 37:270–288. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kolonin MG, Sergeeva A, Staquicini DI, Smith TL, Tarleton CA, Molldrem JJ, Sidman RL, Marchiò S, Pasqualini R and Arap W: Interaction between tumor cell surface receptor RAGE and proteinase 3 mediates prostate cancer metastasis to bone. Cancer Res. 77:3144–3150. 2017. View Article : Google Scholar : PubMed/NCBI | |
Park M, Cho YJ, Kim B, Ko YJ, Jang Y, Moon YH, Hyun H and Lim W: RANKL immunisation inhibits prostate cancer metastasis by modulating EMT through a RANKL-dependent pathway. Sci Rep. 11:121862021. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Ye L, Zhang X, Wang M, Lin C, Huang S, Guo W, Lai Y, Du H, Li J, et al: FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 402:166–176. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nandana S, Tripathi M, Duan P, Chu CY, Mishra R, Liu C, Jin R, Yamashita H, Zayzafoon M, Bhowmick NA, et al: Bone metastasis of prostate cancer can be therapeutically targeted at the TBX2-WNT signaling axis. Cancer Res. 77:1331–1344. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Lang C, Wu Z, Dai Y, He S, Guo W, Huang S, Du H, Ren D and Peng X: MAZ promotes prostate cancer bone metastasis through transcriptionally activating the KRas-dependent RalGEFs pathway. J Exp Clin Cancer Res. 38:3912019. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Lv C, Niu Y, Li C, Li X, Shang Y, Zhang Y, Zhang Y, Zhang Y and Zeng Y: RBM3 suppresses stemness remodeling of prostate cancer in bone microenvironment by modulating N6-methyladenosine on CTNNB1 mRNA. Cell Death Dis. 14:912023. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M, Murata T and Ramos JW: Extracellular regucalcin suppresses the growth, migration, invasion, and adhesion of metastatic human prostate cancer cells. Oncology. 100:399–412. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M, Murata T and Ramos JW: Overexpression of regucalcin blocks the migration, invasion, and bone metastatic activity of human prostate cancer cells: Crosstalk between cancer cells and bone cells. Prostate. 82:1025–1039. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lagunas-Rangel FA: Role of SIRT5 in cancer. Friend or Foe? Biochimie. 209:131–141. 2023.PubMed/NCBI | |
Wang X, Li Z and Sun Y: T-box transcription factor 2 mediates antitumor immune response in cutaneous squamous cell carcinoma by regulating the expression of programmed death ligand 1. Skin Res Technol. 29:e132542023. View Article : Google Scholar : PubMed/NCBI | |
Trivedi T, Pagnotti GM, Guise TA and Mohammad KS: The role of TGF-β in bone metastases. Biomolecules. 11:16432021. View Article : Google Scholar : PubMed/NCBI | |
Gerratana L, Davis AA, Polano M, Zhang Q, Shah AN, Lin C, Basile D, Toffoli G, Wehbe F, Puglisi F, et al: Understanding the organ tropism of metastatic breast cancer through the combination of liquid biopsy tools. Eur J Cancer. 143:147–157. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yonezawa I, Waki M, Tamura Y, Onoda R, Narushima M, Ishizuka T and Tajima S: Gemcitabine-based regimen for primary ovarian angiosarcoma with MYC amplification. Curr Oncol. 21:e782–e789. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stopsack KH, Nandakumar S, Wibmer AG, Haywood S, Weg ES, Barnett ES, Kim CJ, Carbone EA, Vasselman SE, Nguyen B, et al: Oncogenic genomic alterations, clinical phenotypes, and outcomes in metastatic castration-sensitive prostate cancer. Clin Cancer Res. 26:3230–3238. 2020. View Article : Google Scholar : PubMed/NCBI | |
Archer Goode E, Wang N and Munkley J: Prostate cancer bone metastases biology and clinical management (Review). Oncol Lett. 25:1632023. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhang M, Lu W and Yuan C: Prostate cancer cell-derived spondin 2 boosts osteogenic factor levels in osteoblasts via the PI3K/AKT/mTOR pathway. Oncol Rep. 49:232023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li W, Guo S, Wu Z, Zhang L, Liu Y, Li X, Guo X, Cao J, Yang C and Wang Z: FBXO22 mediates the NGF/TRKA signaling pathway in bone metastases in prostate cancer. Am J Pathol. 193:1248–1266. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ziaee S and Chung LWK: Induction of integrin α2 in a highly bone metastatic human prostate cancer cell line: Roles of RANKL and AR under three-dimensional suspension culture. Mol Cancer. 13:2082014. View Article : Google Scholar : PubMed/NCBI | |
Ye XC, Choueiri M, Tu SM and Lin SH: Biology and clinical management of prostate cancer bone metastasis. Front Biosci. 12:3273–3286. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nayerpour Dizaj T, Doustmihan A, Sadeghzadeh Oskouei B, Akbari M, Jaymand M, Mazloomi M and Jahanban-Esfahlan R: Significance of PSCA as a novel prognostic marker and therapeutic target for cancer. Cancer Cell Int. 24:1352024. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Li E, Luo L, Zhao S, Liu L, Wang J, Kang R and Luo J: A PSCA/PGRN-NF-κB-integrin-α4 axis promotes prostate cancer cell adhesion to bone marrow endothelium and enhances metastatic potential. Mol Cancer Res. 18:501–513. 2020. View Article : Google Scholar : PubMed/NCBI | |
Azemikhah M, Ashtiani HA, Aghaei M and Rastegar H: Evaluation of discoidin domain receptor-2 (DDR2) expression level in normal, benign, and malignant human prostate tissues. Res Pharm Sci. 10:356–363. 2015.PubMed/NCBI | |
Yan Z, Jin S, Wei Z, Huilian H, Zhanhai Y, Yue T, Juan L, Jing L, Libo Y and Xu L: Discoidin domain receptor 2 facilitates prostate cancer bone metastasis via regulating parathyroid hormone-related protein. Biochim Biophys Acta. 1842:1350–1363. 2014. View Article : Google Scholar : PubMed/NCBI | |
Calderwood DA, Campbell ID and Critchley DR: Talins and kindlins: Partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol. 14:503–517. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jin JK, Tien PC, Cheng CJ, Song JH, Huang C, Lin SH and Gallick GE: Talin1 phosphorylation activates β1 integrins: A novel mechanism to promote prostate cancer bone metastasis. Oncogene. 34:1811–1821. 2015. View Article : Google Scholar : PubMed/NCBI | |
Holbourn KP, Acharya KR and Perbal B: The CCN family of proteins: Structure-function relationships. Trends Biochem Sci. 33:461–473. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tai HC, Chang AC, Yu HJ, Huang CY, Tsai YC, Lai YW, Sun HL, Tang CH and Wang SW: Osteoblast-derived WNT-induced secreted protein 1 increases VCAM-1 expression and enhances prostate cancer metastasis by down-regulating miR-126. Oncotarget. 5:7589–7598. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chang AC, Chen PC, Lin YF, Su CM, Liu JF, Lin TH, Chuang SM and Tang CH: Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system. Cancer Lett. 426:47–56. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yao L and Zhang X: Interaction between prostate cancer stem cells and bone microenvironment regulates prostate cancer bone metastasis and treatment resistance. J Cancer. 13:2757–2767. 2022. View Article : Google Scholar : PubMed/NCBI | |
Choi SY, Jeon JM, Na AY, Kwon OK, Bang IH, Ha YS, Bae EJ, Park BH, Lee EH, Kwon TG, et al: SIRT5 directly inhibits the PI3K/AKT pathway in prostate cancer cell lines. Cancer Genomics Proteomics. 19:50–59. 2022. View Article : Google Scholar : PubMed/NCBI | |
Siddiqui JA, Seshacharyulu P, Muniyan S, Pothuraju R, Khan P, Vengoji R, Chaudhary S, Maurya SK, Lele SM, Jain M, et al: GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Res. 10:62022. View Article : Google Scholar : PubMed/NCBI | |
Toden S, Zumwalt TJ and Goel A: Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : PubMed/NCBI | |
Loganathan T and Doss CGP: Non-coding RNAs in human health and disease: Potential function as biomarkers and therapeutic targets. Funct Integr Genomics. 23:332023. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bhan A, Soleimani M and Mandal SS: Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yue BL, Huang YZ, Lan XY, Liu WJ and Chen H: Exosomal RNAs: Novel potential biomarkers for diseases-a review. Int J Mol Sci. 23:24612022. View Article : Google Scholar : PubMed/NCBI | |
Prigol AN, Rode MP, da Luz Efe F, Saleh NA and Creczynski-Pasa TB: The bone microenvironment soil in prostate cancer metastasis: An miRNA approach. Cancers (Basel). 15:40272023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Yang C, Chen S, Liu W, Liang J, He S and Hui J: Cancer-derived exosomal miR-375 targets DIP2C and promotes osteoblastic metastasis and prostate cancer progression by regulating the Wnt signaling pathway. Cancer Gene Ther. 30:437–449. 2023.PubMed/NCBI | |
Zheng Y, Qi F, Li L, Yu B, Cheng Y, Ge M, Qin C and Li X: LncNAP1L6 activates MMP pathway by stabilizing the m6A-modified NAP1L2 to promote malignant progression in prostate cancer. Cancer Gene Ther. 30:209–218. 2023. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Zhao J, Li X, Sun F, Qin Y, Yang X, Xiong X, Yin Q, Wang X, Gao L, et al: Identification of miR-1-3p, miR-143-3p and miR-145-5p association with bone metastasis of Gleason 3+4 prostate cancer and involvement of LASP1 regulation. Mol Cell Probes. 68:1019012023. View Article : Google Scholar : PubMed/NCBI | |
Josson S, Gururajan M, Hu P, Shao C, Chu GY, Zhau HE, Liu C, Lao K, Lu CL, Lu YT, et al: miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer. Clin Cancer Res. 20:4636–4646. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dai Y, Ren D, Yang Q, Cui Y, Guo W, Lai Y, Du H, Lin C, Li J, Song L and Peng X: The TGF-β signalling negative regulator PICK1 represses prostate cancer metastasis to bone. Br J Cancer. 117:685–694. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ye Y, Li SL, Ma YY, Diao YJ, Yang L, Su MQ, Li Z, Ji Y, Wang J, Lei L, et al: Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget. 8:94834–94849. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wa Q, Zou C, Lin Z, Huang S, Peng X, Yang C, Ren D, Xu D, Guo Y, Liao Z, et al: Ectopic expression of miR-532-3p suppresses bone metastasis of prostate cancer cells via inactivating NF-κB signaling. Mol Ther Oncolytics. 17:267–277. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ren D, Yang Q, Dai Y, Guo W, Du H, Song L and Peng X: Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway. Mol Cancer. 16:1172017. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Zhang H, Zhang J, Shen L, Yang J, Wang Y, Ma J and Zhuan B: miR-210-3p promotes lung cancer development and progression by modulating USF1 and PCGF3. Onco Targets Ther. 14:3687–3700. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tuo X, Zhou Y, Yang X, Ma S, Liu D, Zhang X, Hou H, Wang R, Li X and Zhao L: miR-532-3p suppresses proliferation and invasion of ovarian cancer cells via GPNMB/HIF-1α/HK2 axis. Pathol Res Pract. 237:1540322022. View Article : Google Scholar : PubMed/NCBI | |
Luo B, Yuan Y, Zhu Y, Liang S, Dong R, Hou J, Li P, Xing Y, Lu Z, Lo R and Kuang GM: microRNA-145-5p inhibits prostate cancer bone metastatic by modulating the epithelial-mesenchymal transition. Front Oncol. 12:9887942022. View Article : Google Scholar : PubMed/NCBI | |
Chang YS, Chen WY, Yin JJ, Sheppard-Tillman H, Huang J and Liu YN: EGF receptor promotes prostate cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Res. 75:3077–3086. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fu Q, Liu X, Liu Y, Yang J, Lv G and Dong S: MicroRNA-335 and −543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase. Int J Mol Med. 36:1417–1425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Colden M, Dar AA, Saini S, Dahiya PV, Shahryari V, Yamamura S, Tanaka Y, Stein G, Dahiya R and Majid S: MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis. 8:e25722017. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Wa Q, Pan J, Peng X, Ren D, Huang Y, Chen X and Tang Y: Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer. J Exp Clin Cancer Res. 36:1732017. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Wa Q, Pan J, Peng X, Ren D, Li Q, Dai Y, Yang Q, Huang Y, Zhang X, et al: Transcriptional downregulation of miR-133b by REST promotes prostate cancer metastasis to bone via activating TGF-β signaling. Cell Death Dis. 9:7792018. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Zou C, Tang Y, Wa Q, Peng X, Chen X, Yang C, Ren D, Huang Y, Liao Z, et al: miR-582-3p and miR-582-5p suppress prostate cancer metastasis to bone by repressing TGF-β signaling. Mol Ther Nucleic Acids. 16:91–104. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wa Q, Huang S, Pan J, Tang Y, He S, Fu X, Peng X, Chen X, Yang C, Ren D, et al: miR-204-5p represses bone metastasis via inactivating NF-κB signaling in prostate cancer. Mol Ther Nucleic Acids. 18:567–579. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wa Q, Li L, Lin H, Peng X, Ren D, Huang Y, He P and Huang S: Downregulation of miR-19a-3p promotes invasion, migration and bone metastasis via activating TGF-β signaling in prostate cancer. Oncol Rep. 39:81–90. 2018.PubMed/NCBI | |
Qu L, Li Z and Liu P: mir-204-5p Acts as a tumor suppressor by targeting DNM2 in osteosarcoma cells. J Healthc Eng. 2022:89445882022. View Article : Google Scholar : PubMed/NCBI | |
Sun R, Wei T, Ding D, Zhang J, Chen S, He HH, Wang L and Huang H: CYCLIN K down-regulation induces androgen receptor gene intronic polyadenylation, variant expression and PARP inhibitor vulnerability in castration-resistant prostate cancer. Proc Natl Acad Sci USA. 119:e22055091192022. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Chen B, Zhang B, Li C, Qiu Y, Yang H and Huang Z: miR-204-5p promotes apoptosis and inhibits migration of gastric cancer cells by targeting HER-2. Mol Med Rep. 22:2645–2654. 2020.PubMed/NCBI | |
Peng L, Li P and Peng Z: miR-141-3p enhanced radiosensitivity of CRC cells. Comb Chem High Throughput Screen. 27:118–126. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Fu W, Yin F, Xia L, Zhang Y, Wang B, Li T, Zhang T, Cheng L, Wei Y and Gao B: miR-141-3p suppresses development of clear cell renal cell carcinoma by regulating NEK6. Anticancer Drugs. 33:e125–e133. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ferraz RS, Cavalcante JVF, Magalhães L, Ribeiro-Dos-Santos  and Dalmolin RJS: Revealing metastatic castration-resistant prostate cancer master regulator through lncRNAs-centered regulatory network. Cancer Med. 12:19279–19290. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Yin C, Wu Z, Wang X, Lin Q, Jiang X, Du H, Lang C, Peng X and Dai Y: The long transcript of lncRNA TMPO-AS1 promotes bone metastases of prostate cancer by regulating the CSNK2A1/DDX3X complex in Wnt/β-catenin signaling. Cell Death Discov. 9:2872023. View Article : Google Scholar : PubMed/NCBI | |
Xi X, Hu Z, Wu Q, Hu K, Cao Z, Zhou J, Liao J, Zhang Z, Hu Y, Zhong X and Bao Y: High expression of small nucleolar RNA host gene 3 predicts poor prognosis and promotes bone metastasis in prostate cancer by activating transforming growth factor-beta signaling. Bioengineered. 13:1895–1907. 2022. View Article : Google Scholar : PubMed/NCBI | |
Misawa A, Kondo Y, Takei H and Takizawa T: Long noncoding RNA HOXA11-AS and transcription factor HOXB13 modulate the expression of bone metastasis-related genes in prostate cancer. Genes (Basel). 12:1822021. View Article : Google Scholar : PubMed/NCBI | |
Lang C, Dai Y, Wu Z, Yang Q, He S, Zhang X, Guo W, Lai Y, Du H, Wang H, et al: SMAD3/SP1 complex-mediated constitutive active loop between lncRNA PCAT7 and TGF-β signaling promotes prostate cancer bone metastasis. Mol Oncol. 14:808–828. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hao H, Chen H, Xie L, Liu H and Wang D: LncRNA KCNQ1OT1 promotes proliferation, invasion and metastasis of prostate cancer by regulating miR-211-5p/CHI3L1 pathway. Onco Targets Ther. 14:1659–1671. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu CY, Chen J, Qin XH, You P, Ma J, Zhang J, Zhang H and Xu JD: Long non-coding RNA NORAD promotes the prostate cancer cell extracellular vesicle release via microRNA-541-3p-regulated PKM2 to induce bone metastasis of prostate cancer. J Exp Clin Cancer Res. 40:982021. View Article : Google Scholar : PubMed/NCBI | |
Mo C, Huang B, Zhuang J, Jiang S, Guo S and Mao X: LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis. Clin Transl Med. 11:e4932021. View Article : Google Scholar : PubMed/NCBI | |
Ma Q, Qi X, Lin X, Li L, Chen L and Hu W: LncRNA SNHG3 promotes cell proliferation and invasion through the miR-384/hepatoma-derived growth factor axis in breast cancer. Hum Cell. 33:232–242. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Jiang F, Ge D, Tang J, Chen H, Yang J, Yao Y, Yan J, Qiu J, Yin Z, et al: LncRNA SNHG3/miRNA-151a-3p/RAB22A axis regulates invasion and migration of osteosarcoma. Biomed Pharmacother. 112:1086952019. View Article : Google Scholar : PubMed/NCBI | |
Xuan Y and Wang Y: Long non-coding RNA SNHG3 promotes progression of gastric cancer by regulating neighboring MED18 gene methylation. Cell Death Dis. 10:6942019. View Article : Google Scholar : PubMed/NCBI | |
Fendler WP, Eiber M, Beheshti M, Bomanji J, Calais J, Ceci F, Cho SY, Fanti S, Giesel FL, Goffin K, et al: PSMA PET/CT: Joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur J Nucl Med Mol Imaging. 50:1466–1486. 2023. View Article : Google Scholar : PubMed/NCBI | |
Eiber M, Herrmann K, Calais J, Hadaschik B, Giesel FL, Hartenbach M, Hope T, Reiter R, Maurer T, Weber WA and Fendler WP: Prostate cancer molecular imaging standardized evaluation (PROMISE): Proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J Nucl Med. 59:469–478. 2018. View Article : Google Scholar : PubMed/NCBI | |
Regula N, Kostaras V, Johansson S, Trampal C, Lindström E, Lubberink M, Iyer V, Velikyan I and Sörensen J: Comparison of 68Ga-PSMA PET/CT with fluoride PET/CT for detection of bone metastatic disease in prostate cancer. Eur J Hybrid Imaging. 6:52022. View Article : Google Scholar : PubMed/NCBI | |
Brenner AI, Koshy J, Morey J, Lin C and DiPoce J: The bone scan. Semin Nucl Med. 42:11–26. 2012. View Article : Google Scholar : PubMed/NCBI | |
Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H and Leibovitch I: The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 47:287–297. 2006.PubMed/NCBI | |
Calais J, Ceci F, Eiber M, Hope TA, Hofman MS, Rischpler C, Bach-Gansmo T, Nanni C, Savir-Baruch B, Elashoff D, et al: 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: A prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 20:1286–1294. 2019. View Article : Google Scholar : PubMed/NCBI | |
van Boxtel W, Lütje S, van Engen-van Grunsven ICH, Verhaegh GW, Schalken JA, Jonker MA, Nagarajah J, Gotthardt M and van Herpen CML: 68Ga-PSMA-HBED-CC PET/CT imaging for adenoid cystic carcinoma and salivary duct carcinoma: A phase 2 imaging study. Theranostics. 10:2273–2283. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sonni I, Felker ER, Lenis AT, Sisk AE, Bahri S, Allen-Auerbach M, Armstrong WR, Suvannarerg V, Tubtawee T, Grogan T, et al: Head-to-head comparison of 68Ga-PSMA-11 PET/CT and mpMRI with a histopathology gold standard in the detection, intraprostatic localization, and determination of local extension of primary prostate cancer: Results from a prospective single-center imaging trial. J Nucl Med. 63:847–854. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Gou Z, Wu R, Yuan Y, Yu G and Zhao Y: Comparison of PSMA-PET/CT, choline-PET/CT, NaF-PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A systematic review and meta-analysis. Skeletal Radiol. 48:1915–1924. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Wu R, Wang W, Zhao Y and Liu X: 68Ga-PSMA PET/CT for the detection of bone metastases in prostate cancer: A systematic review of the published literature. Clin Physiol Funct Imaging. Oct 29–2017.(Epub ahead of print). | |
Coleman RE, Croucher PI, Padhani AR, Clézardin P, Chow E, Fallon M, Guise T, Colangeli S, Capanna R and Costa L: Bone metastases. Nat Rev Dis Primers. 6:832020. View Article : Google Scholar : PubMed/NCBI | |
Urabe F, Kosaka N, Yamamoto Y, Ito K, Otsuka K, Soekmadji C, Egawa S, Kimura T and Ochiya T: Metastatic prostate cancer-derived extracellular vesicles facilitate osteoclastogenesis by transferring the CDCP1 protein. J Extracell Vesicles. 12:e123122023. View Article : Google Scholar : PubMed/NCBI | |
Hu C, Chen Q, Wu T, Du X, Dong Y, Peng Z, Xue W, Sunkara V, Cho YK and Dong L: The role of extracellular vesicles in the treatment of prostate cancer. Small. 20:e23110712024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Fang YX, Dong B, Du X, Wang J, Wang X, Gao WQ and Xue W: Discovery of extracellular vesicles derived miR-181a-5p in patient's serum as an indicator for bone-metastatic prostate cancer. Theranostics. 11:878–892. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Sui B, Fan W, Lei L, Zhou L, Yang L, Diao Y, Zhang Y, Li Z, Liu J and Hao X: Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p. J Extracell Vesicles. 10:e120562021. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Du X, Wang X, Xiao H, Jing N, Xue W, Dong B, Gao WQ and Fang YX: Tumor-derived miR-378a-3p-containing extracellular vesicles promote osteolysis by activating the Dyrk1a/Nfatc1/Angptl2 axis for bone metastasis. Cancer Lett. 526:76–90. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zeng F, Zhao C, Wang R, Ren L, Qiu H, Zou Z, Ding H, Sun Z, Li J and Dong S: Antagonizing exosomal miR-18a-5p derived from prostate cancer cells ameliorates metastasis-induced osteoblastic lesions by targeting Hist1h2bc and activating Wnt/β-catenin pathway. Genes Dis. 10:1626–1640. 2022. View Article : Google Scholar : PubMed/NCBI | |
Baldessari C, Pipitone S, Molinaro E, Cerma K, Fanelli M, Nasso C, Oltrecolli M, Pirola M, D'Agostino E, Pugliese G, et al: Bone metastases and health in prostate cancer: From pathophysiology to clinical implications. Cancers (Basel). 15:15182023. View Article : Google Scholar : PubMed/NCBI | |
Schwartz GG: Prostate cancer, serum parathyroid hormone, and the progression of skeletal metastases. Cancer Epidemiol Biomarkers Prev. 17:478–483. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Hoggard NK, Kantake N, Hildreth BE III and Rosol TJ: Effects of dickkopf-1 (DKK-1) on prostate cancer growth and bone metastasis. Cells. 12:26952023. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Li Y, Wu Q, Xie L, Barwick B, Fu C, Li X, Wu D, Xia S, Chen J, et al: Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nat Commun. 12:17142021. View Article : Google Scholar : PubMed/NCBI | |
Gomez-Veiga F, Ponce-Reixa J, Martinez-Breijo S, Planas J and Morote J: Advances in prevention and treatment of bone metastases in prostate cancer. Role of RANK/RANKL inhibition. Actas Urol Esp. 37:292–304. 2013.(In English, Spanish). View Article : Google Scholar : PubMed/NCBI | |
Mizuta K, Oshiro H, Katsuki R, Tsuha Y, Aoki Y, Tome Y and Nishida K: Denosumab administration for bone metastases from solid tumors: A retrospective cross-sectional study. BMC Cancer. 23:9992023. View Article : Google Scholar : PubMed/NCBI | |
Agarwal N, McGregor B, Maughan BL, Dorff TB, Kelly W, Fang B, McKay RR, Singh P, Pagliaro L, Dreicer R, et al: Cabozantinib in combination with atezolizumab in patients with metastatic castration-resistant prostate cancer: Results from an expansion cohort of a multicentre, open-label, phase 1b trial (COSMIC-021). Lancet Oncol. 23:899–909. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu EY, Wilding G, Posadas E, Gross M, Culine S, Massard C, Morris MJ, Hudes G, Calabrò F, Cheng S, et al: Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 15:7421–7428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Qiao L, Liang Y, Li N, Hu X, Luo D, Gu J, Lu Y and Zheng Q: Endothelin-A receptor antagonists in prostate cancer treatment-a meta-analysis. Int J Clin Exp Med. 8:3465–3473. 2015.PubMed/NCBI | |
Lee YT, Tan YJ and Oon CE: Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 834:188–196. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reichert ZR, Urrutia J and Alumkal JJ: Microsatellite Instability as an emerging biomarker for checkpoint inhibitor response in advanced prostate cancer. JAMA Oncology. 5:478–479. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mitsogiannis I, Tzelves L, Dellis A, Issa H, Papatsoris A and Moussa M: Prostate cancer immunotherapy. Expert Opin Biol Ther. 22:577–590. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu YM, Cieślik M, Lonigro RJ, Vats P, Reimers MA, Cao X, Ning Y, Wang L, Kunju LP, de Sarkar N, et al: Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell. 173:1770–1782.e14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bochum S, Berger S and Martens UM: Olaparib. Recent Results Cancer Res. 211:217–233. 2018. View Article : Google Scholar : PubMed/NCBI | |
Risdon EN, Chau CH, Price DK, Sartor O and Figg WD: PARP inhibitors and prostate cancer: To infinity and beyond BRCA. Oncologist. 26:e115–e129. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen A: PARP inhibitors: Its role in treatment of cancer. Chin J Cancer. 30:463–471. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stamatakos PV, Fragkoulis C, Leventi A, Gklinos K, Kontolatis N, Papatsoris A and Dellis A: PSMA-based therapeutics for prostate cancer. Expert Opin Pharmacother. 25:1405–1419. 2024. View Article : Google Scholar : PubMed/NCBI | |
Combes AD, Palma CA, Calopedos R, Wen L, Woo H, Fulham M and Leslie S: PSMA PET-CT in the diagnosis and staging of prostate cancer. Diagnostics (Basel). 12:25942022. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Niaz MO, Nelson A, Skafida M and Niaz MJ: Review of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Cureus. 12:e89212020.PubMed/NCBI | |
Narayan V, Barber-Rotenberg JS, Jung IY, Lacey SF, Rech AJ, Davis MM, Hwang WT, Lal P, Carpenter EL, Maude SL, et al: PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: A phase 1 trial. Nat Med. 28:724–734. 2022. View Article : Google Scholar : PubMed/NCBI | |
Almuradova E, Seyyar M, Arak H, Tamer F, Kefeli U, Koca S, Sen E, Telli TA, Karatas F, Gokmen I, et al: The real-world outcomes of Lutetium-177 PSMA-617 radioligand therapy in metastatic castration-resistant prostate cancer: Turkish oncology group multicenter study. Int J Cancer. 154:692–700. 2024. View Article : Google Scholar : PubMed/NCBI | |
Maharaj M, Heslop L, Govender T, Korowlay N, Singh A, Choudhary P and Sathekge M: The outcome and safety of re-challenge Lutetium-177 PSMA (177Lu-PSMA) therapy with low-dose docetaxel as a radiosensitizer-a promising combination in metastatic castrate-resistant prostate cancer (mCRPC): A case report. Nucl Med Mol Imaging. 55:136–140. 2021. View Article : Google Scholar : PubMed/NCBI | |
Flegar L, Thoduka SG, Librizzi D, Luster M, Zacharis A, Heers H, Eisenmenger N, Ahmadzadehfar H, Eiber M, Weber W, et al: Adoption of Lutetium-177 PSMA radioligand therapy for metastatic castration resistant prostate cancer: A total population analysis in Germany from 2016 to 2020. Eur J Nucl Med Mol Imaging. 50:2188–2195. 2023. View Article : Google Scholar : PubMed/NCBI | |
Khreish F, Ghazal Z, Marlowe RJ, Rosar F, Sabet A, Maus S, Linxweiler J, Bartholomä M and Ezziddin S: 177 Lu-PSMA-617 radioligand therapy of metastatic castration-resistant prostate cancer: Initial 254-patient results from a prospective registry (REALITY study). Eur J Nucl Med Mol Imaging. 49:1075–1085. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zarrabi KK, Narayan V, Mille PJ, Zibelman MR, Miron B, Bashir B and Kelly WK: Bispecific PSMA antibodies and CAR-T in metastatic castration-resistant prostate cancer. Ther Adv Urol. 15:175628722311822192023. View Article : Google Scholar : PubMed/NCBI | |
Lund ME, Howard CB, Thurecht KJ, Campbell DH, Mahler SM and Walsh BJ: A bispecific T cell engager targeting Glypican-1 redirects T cell cytolytic activity to kill prostate cancer cells. BMC Cancer. 20:12142020. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto K, Trad A, Baumgart A, Hüske L, Lorenzen I, Chalaris A, Grötzinger J, Dechow T, Scheller J and Rose-John S: A novel bispecific single-chain antibody for ADAM17 and CD3 induces T-cell-mediated lysis of prostate cancer cells. Biochem J. 445:135–144. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nyquist MD, Corella A, Coleman I, De Sarkar N, Kaipainen A, Ha G, Gulati R, Ang L, Chatterjee P, Lucas J, et al: Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of therapeutics and confers vulnerability to replication stress. Cell Rep. 31:1076692020. View Article : Google Scholar : PubMed/NCBI | |
Patel SA: Managing the unmanageable: Evidence-driven approaches to real-world patient prototypes of TP53-mutant myelodysplastic neoplasms and acute myeloid leukemia. Leukemia. Sep 30–2024.(Epub ahead of print). View Article : Google Scholar | |
Lee YC, Lee YL and Li CY: BRCA genes and related cancers: A meta-analysis from epidemiological cohort studies. Medicina (Kaunas). 57:9052021. View Article : Google Scholar : PubMed/NCBI | |
Sweeney C, Bracarda S, Sternberg CN, Chi KN, Olmos D, Sandhu S, Massard C, Matsubara N, Alekseev B, Parnis F, et al: Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): A multicentre, randomised, double-blind, phase 3 trial. Lancet. 398:131–142. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, et al: Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: A randomised, double-blind study. Lancet. 377:813–822. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shenderov E, Boudadi K, Fu W, Wang H, Sullivan R, Jordan A, Dowling D, Harb R, Schonhoft J, Jendrisak A, et al: Nivolumab plus ipilimumab, with or without enzalutamide, in AR-V7-expressing metastatic castration-resistant prostate cancer: A phase-2 nonrandomized clinical trial. Prostate. 81:326–338. 2021. View Article : Google Scholar : PubMed/NCBI | |
Graff JN, Beer TM, Alumkal JJ, Slottke RE, Redmond WL, Thomas GV, Thompson RF, Wood MA, Koguchi Y, Chen Y, et al: A phase II single-arm study of pembrolizumab with enzalutamide in men with metastatic castration-resistant prostate cancer progressing on enzalutamide alone. J Immunother Cancer. 8:e0006422020. View Article : Google Scholar : PubMed/NCBI | |
McNeel DG, Eickhoff JC, Wargowski E, Johnson LE, Kyriakopoulos CE, Emamekhoo H, Lang JM, Brennan MJ and Liu G: Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer (mCRPC). J Immunother Cancer. 10:e0041982022. View Article : Google Scholar : PubMed/NCBI | |
Xia QD, Zhang SH, Zeng N, Lu YC, Qin BL and Wang SG: Novel androgen receptor inhibitors for metastatic hormone-sensitive prostate cancer: Current application and future perspectives. Biomed Pharmacother. 168:1158062023. View Article : Google Scholar : PubMed/NCBI | |
Shah H and Vaishampayan U: Therapy of advanced prostate cancer: Targeting the androgen receptor axis in earlier lines of treatment. Target Oncol. 13:679–689. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ming A, Wang J, Chen W and Fang Z: PROTACs targeting androgen receptor signaling: Potential therapeutic agents for castration-resistant prostate cancer. Pharmacol Res. 205:1072342024. View Article : Google Scholar : PubMed/NCBI | |
Petrylak DP, Vaishampayan UN, Patel KR, Higano CS, Albany C, Dawson NA, Mehlhaff BA, Quinn DI, Nordquist LT, Wagner VJ, et al: A randomized phase IIa study of quantified bone scan response in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with radium-223 dichloride alone or in combination with abiraterone acetate/prednisone or enzalutamide. ESMO Open. 6:1000822021. View Article : Google Scholar : PubMed/NCBI | |
Manna F, Karkampouna S, Zoni E, De Menna M, Hensel J, Thalmann GN and Kruithof-de Julio M: Metastases in prostate cancer. Cold Spring Harb Perspect Med. 9:a0336882019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X: Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond). 39:762019. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Hu D, Zhang Y, Ma C, Shen L and Shuai B: Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials. Front Oncol. 13:11338282023. View Article : Google Scholar : PubMed/NCBI | |
Shiota M, Akamatsu S, Tsukahara S, Nagakawa S, Matsumoto T and Eto M: Androgen receptor mutations for precision medicine in prostate cancer. Endocr Relat Cancer. 29:R143–R155. 2022. View Article : Google Scholar : PubMed/NCBI | |
Farahzadi R, Valipour B, Montazersaheb S and Fathi E: Targeting the stem cell niche micro-environment as therapeutic strategies in aging. Front Cell Dev Biol. 11:11621362023. View Article : Google Scholar : PubMed/NCBI | |
Fathi E, Farahzadi R, Sheervalilou R, Sanaat Z and Vietor I: A general view of CD33+ leukemic stem cells and CAR-T cells as interesting targets in acute myeloblatsic leukemia therapy. Blood Res. 55:10–16. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fathi E, Valipour B, Vietor I and Farahzadi R: An overview of the myocardial regeneration potential of cardiac c-Kit+ progenitor cells via PI3K and MAPK signaling pathways. Future Cardiol. 16:199–209. 2020. View Article : Google Scholar : PubMed/NCBI |