Oxygen-dependent regulation of NDRG1 in human glioblastoma cells in vitro and in vivo

  • Authors:
    • Harun M. Said
    • Susanne Stein
    • Carsten Hagemann
    • Buelent Polat
    • Adrian Staab
    • Jelena Anacker
    • Beate Schoemig
    • Matthias Theobald
    • Michael Flentje
    • Dirk Vordermark
  • View Affiliations

  • Published online on: January 1, 2009     https://doi.org/10.3892/or_00000214
  • Pages: 237-246
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

NDRG1 is a member of the N-myc downregulated gene (NDRG) family. Its induction occurs via diverse physiological and pathological conditions (hypoxia, cellular differentiation, heavy metal, N-myc, neoplasia) which modulate NDRG1 transcription, mRNA stability and translation. Hypoxia, among other factors, induces NDRG1 expression and plays an important role in its regulation of expression. To date, the complete detailed function of this protein in humans remains unknown. Hypoxia represents a common feature of solid tumors. In our study, differences in NDRG1 expression between different WHO grades of astrocytic tumors were comparatively examined in vivo in human low-grade astrocytoma (WHO grade 2) and glioblastoma (WHO grade 4) at both the protein and mRNA level by Western blot analysis and semi-quantitative RT-PCR, respectively. Furthermore, the same proteins were determined in vitro in U373, U251 and GaMG human glioblastoma cells using the same methods. HIF-1α protein and mRNA regulation under hypoxia was also determined in vitro in U251, U373 and GaMG cells. This regulation was shown at the same levels in vivo in human low-grade astrocytoma (WHO grade 2) and glioblastoma which showed a higher NDRG1 overexpression level in glioblastoma than in low-grade astrocytoma. siRNA- and iodoacetate (IAA)-mediated downregulation of NDRG1 mRNA and protein expression in vitro in human glioblastoma cell lines showed a nearly complete inhibition of NDRG1 expression when compared to the results obtained due to the inhibitory role of glycolysis inhibitor IAA. Hypoxia responsive elements (HREs) bound by nuclear HIF-1α in human glioblastoma cells in vitro under different oxygenation conditions and the clearly enhanced binding of nuclear extracts from glioblastoma cell samples exposed to extreme hypoxic conditions confirmed the HIF-1 Western blotting results. Due to its clear regulatory behavior under hypoxic condition in human tumor cells, NDRG1 represents an additional diagnostic marker for brain tumor detection, due to the role of hypoxia in regulating this gene, and it can represent a potential target for tumor treatment in human glioblastoma.

Related Articles

Journal Cover

January 2009
Volume 21 Issue 1

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Said HM, Stein S, Hagemann C, Polat B, Staab A, Anacker J, Schoemig B, Theobald M, Flentje M, Vordermark D, Vordermark D, et al: Oxygen-dependent regulation of NDRG1 in human glioblastoma cells in vitro and in vivo. Oncol Rep 21: 237-246, 2009.
APA
Said, H.M., Stein, S., Hagemann, C., Polat, B., Staab, A., Anacker, J. ... Vordermark, D. (2009). Oxygen-dependent regulation of NDRG1 in human glioblastoma cells in vitro and in vivo. Oncology Reports, 21, 237-246. https://doi.org/10.3892/or_00000214
MLA
Said, H. M., Stein, S., Hagemann, C., Polat, B., Staab, A., Anacker, J., Schoemig, B., Theobald, M., Flentje, M., Vordermark, D."Oxygen-dependent regulation of NDRG1 in human glioblastoma cells in vitro and in vivo". Oncology Reports 21.1 (2009): 237-246.
Chicago
Said, H. M., Stein, S., Hagemann, C., Polat, B., Staab, A., Anacker, J., Schoemig, B., Theobald, M., Flentje, M., Vordermark, D."Oxygen-dependent regulation of NDRG1 in human glioblastoma cells in vitro and in vivo". Oncology Reports 21, no. 1 (2009): 237-246. https://doi.org/10.3892/or_00000214