Diagnostic significance and prognostic role of the ARID1A gene in cancer outcomes (Review)
- Authors:
- Evangelia N. Pavlidou
- Vasileios Balis
-
Affiliations: Covance Clinical and Periapproval Services Ltd., Harrogate, North Yorkshire HG3 1PY, UK, AMC Metropolitan College, 54624 Thessaloniki, Greece - Published online on: January 31, 2020 https://doi.org/10.3892/wasj.2020.37
- Pages: 49-64
-
Copyright: © Pavlidou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bagchi A and Mills AA: The quest for the 1p36 tumor suppressor. Cancer Res. 68:2551–2556. 2008.PubMed/NCBI View Article : Google Scholar | |
Reisman D, Glaros S and Thompson EA: The SWI/SNF complex and cancer. Oncogene. 28:1653–1668. 2009.PubMed/NCBI View Article : Google Scholar | |
Wu JN and Roberts CW: ARID1A mutations in cancer: Another epigenetic tumor suppressor? Cancer Discov. 3:35–43. 2013.PubMed/NCBI View Article : Google Scholar | |
Guan B, Gao M, Wu CH, Wang TL and Shih IM: Functional analysis of in-frame indel ARID1A mutations reveals new regulatory mechanisms of its tumor suppressor functions. Neoplasia. 14:986–993. 2012.PubMed/NCBI View Article : Google Scholar | |
Samartzis EP, Noske A, Dedes KJ, Fink D and Imesch P: ARID1A mutations and PI3K/AKT pathway alterations in endometriosis and endometriosis-associated ovarian carcinomas. Int J Mol Sci. 14:18824–18849. 2013.PubMed/NCBI View Article : Google Scholar | |
Wang X, Nagl NG Jr, Flowers S, Zweitzig D, Dallas PB and Moran E: Expression of p270 (ARID1A), a component of human SWI/SNF complexes, in human tumors. Int J Cancer. 112(636)2004.PubMed/NCBI View Article : Google Scholar | |
Flores-Alcantar A, Gonzales-Sandoval A, Escalante-Alcalde D and Lomeli H: Dynamics of expression of ARID1A and ARID1B subunits in mouse embryos and in cells during the cell cycle. Cell Tissue Res. 345:137–148. 2011.PubMed/NCBI View Article : Google Scholar | |
Jones S, Wang TL, Shih IeM, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA Jr, Vogelstein B, et al: Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 330:228–231. 2010.PubMed/NCBI View Article : Google Scholar | |
Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, et al: ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 363:1532–1543. 2010.PubMed/NCBI View Article : Google Scholar | |
Jones S, Meng L, Parsons DW, Zhang X, Wesseling J, Kristel P, Schmidt MK, Markowitz S, Yan H, Bigner D, et al: Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat. 33:100–103. 2012.PubMed/NCBI View Article : Google Scholar | |
Luchini C, Veronese N, Solmi M, Cho H, Kim JH, Chou A, Gill AJ, Faraj SF, Chaux A, Netto GJ, et al: Prognostic role and implications of mutation status of tumor suppressor gene ARID1A in cancer: A systematic review and meta-analysis. Oncotarget. 6:39088–39097. 2015.PubMed/NCBI View Article : Google Scholar | |
Mao TL and Shih IeM: The roles of ARID1A in gynecologic cancer. J Gynecol Oncol. 24:376–381. 2013.PubMed/NCBI View Article : Google Scholar | |
Wu RC, Wang TL and Shih IeM: The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther. 15:655–664. 2014.PubMed/NCBI View Article : Google Scholar | |
Lyu C, Zhang Y, Zhou X and Lang J: ARID1A gene silencing reduces the sensitivity of ovarian clear cell carcinoma to cisplastin. Exp Ther Med. 12:4067–4071. 2016.PubMed/NCBI View Article : Google Scholar | |
Gregory SL, Kortschak DR, Kallionis B and Saint R: Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence-specific DNA-binding proteins. Mol Cell Biol. 16:792–799. 1996.PubMed/NCBI View Article : Google Scholar | |
Herrscher RF, Kaplan MH, Lelsz DL, Das C, Scheuermann R and Tucker PW: The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: A B cell-specific trans-activator that describes a new DNA-binding protein family. Genes Dev. 9:3067–3082. 1995.PubMed/NCBI View Article : Google Scholar | |
Patsialou A, Wilsker D and Moran E: DNA-binding properties of ARID family proteins. Nucleic Acids Res. 33:66–80. 2005.PubMed/NCBI View Article : Google Scholar | |
Dallas PB, Pacchione S, Wilsker D, Bowrin V, Kobayashi R and Moran E: The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity. Mol Cell Biol. 20:3137–3146. 2000.PubMed/NCBI View Article : Google Scholar | |
Wang X, Haswell JR and Roberts CW: Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer-mechanisms and potential therapeutic insights. Clin Cancer Res. 20:21–27. 2014.PubMed/NCBI View Article : Google Scholar | |
Carlson M, Osmond BC and Botstein D: Mutants of yeast defective in sucrose utilization. Genetics. 98:25–40. 1981.PubMed/NCBI | |
Wilsker D, Patsialou A, Zumbrun SD, Kim S, Chen Y, Dallas PB and Moran E: The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes. Nucleic Acids Res. 32:1345–1353. 2004.PubMed/NCBI View Article : Google Scholar | |
Kwon H, Imbalzano AN, Khavari PA, Kingston RE and Green MR: Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature. 370:477–481. 1994.PubMed/NCBI View Article : Google Scholar | |
Li XS, Trojer P, Matsumura T, Treisman JE and Tanese N: Mammalian SWI/SNF-a subunit BAF250/ARID1 is an E3 ubiquitin ligase that targets histone H2B. Mol Cell Biol. 30:1673–1688. 2010.PubMed/NCBI View Article : Google Scholar | |
Narlicar GJ, Sundaramoorthy R and Owen-Hughes T: Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 154:490–503. 2013.PubMed/NCBI View Article : Google Scholar | |
Smith CL and Peterson CL: A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling. Mol Cell Biol. 25:5880–5892. 2005.PubMed/NCBI View Article : Google Scholar | |
Becker PB: Nucleosome sliding: Facts and fiction. EMBO J. 21:4749–4753. 2002.PubMed/NCBI View Article : Google Scholar | |
Cairns BR: Chromatin remodeling: Insights and intrigue from single-molecule studies. Nat Struct Mol Biol. 14:989–996. 2007.PubMed/NCBI View Article : Google Scholar | |
Hargreaves DC and Crabtree GR: ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms. Cell Res. 21:396–420. 2011.PubMed/NCBI View Article : Google Scholar | |
Vignali M, Hassan AH, Neely KE and Workman JL: ATP-dependent chromatin-remodeling complexes. Mol Cell Biol. 20:1899–1910. 2000.PubMed/NCBI View Article : Google Scholar | |
Schnitzler G, Sif S and Kingston RE: Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell. 94:17–27. 1998.PubMed/NCBI View Article : Google Scholar | |
Imbalzano AN, Kwon H, Green MR and Kingston RE: Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature. 370:481–485. 1994.PubMed/NCBI View Article : Google Scholar | |
Bartolomew B: Regulating the chromatin landscape: Structural and mechanistic perspectives. Annu Rev Biochem. 83:671–696. 2014.PubMed/NCBI View Article : Google Scholar | |
Jeong KW, Lee YH and Stallcup MR: Recruitment of the SWI/SNF chromatin remodeling complex to steroid hormone-regulated promoters by nuclear receptor coactivator flightless-I. J Biol Chem. 284:29298–29309. 2009.PubMed/NCBI View Article : Google Scholar | |
Ronan JL, Wu W and Crabtree GR: From neural development to cognition: Unexpected roles for chromatin. Nat Rev Genet. 14:347–359. 2013.PubMed/NCBI View Article : Google Scholar | |
Decristofaro MF, Betz BL, Rorie CJ, Reisman DN, Wang W and Weissman BE: Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J Cell Physiol. 186:136–145. 2001.PubMed/NCBI View Article : Google Scholar | |
Inoue H, Furukawa T, Giannakopoulos S, Zhou S, King DS and Tanese N: Largest subunits of the human SWI/SNF chromatin-remodeling complex promote transcriptional activation by steroid hormone receptors. J Biol Chem. 277:41674–41685. 2002.PubMed/NCBI View Article : Google Scholar | |
Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J and Crabtree GR: Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 45:592–601. 2013.PubMed/NCBI View Article : Google Scholar | |
Keenen B, Qi H, Saladi SV, Yeung M and de la Serna IL: Heterogeneous SWI/SNF chromatin remodeling complexes promote expression of microphthalmia-associated transcription factor target genes in melanoma. Oncogene. 29:81–92. 2010.PubMed/NCBI View Article : Google Scholar | |
Tang L, Nogales E and Ciferri C: Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol. 102:122–128. 2010.PubMed/NCBI View Article : Google Scholar | |
Nie Z, Xue Y, Yang D, Zhou S, Deroo BJ, Archer TK and Wang W: A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol Cell Biol. 20:8879–8888. 2000.PubMed/NCBI View Article : Google Scholar | |
Takao C, Morikawa A, Ohkubo H, Kito Y, Saigo K, Sakuratami T, Futamura M, Takeuchi T and Yoshida K: Downregulation of ARID1A, a component of the SWI/SNF chromatin remodeling complex, in breast cancer. J Cancer. 8:1–8. 2017.PubMed/NCBI View Article : Google Scholar | |
Inoue H, Giannakopoulos S, Parkhurst CN, Matsumura T, Kono EA, Furukawa T and Tanese N: Target genes of the largest human SWI/SNF complex subunit control cell growth. Biochem J. 434:83–92. 2011.PubMed/NCBI View Article : Google Scholar | |
Dechassa ML, Zhang B, Horowitz-Scherer R, Persinger J, Woodcock CL, Peterson CL and Bartholomew B: Architecture of the SWI/SNF-nucleosome complex. Mol Cell Biol. 28:6010–6021. 2008.PubMed/NCBI View Article : Google Scholar | |
Nagl NG Jr, Wang X, Patsialou A, Van Scoy M and Moran E: Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J. 26:752–763. 2007.PubMed/NCBI View Article : Google Scholar | |
Wang X, Nagl NG, Wilsker D, Van Scoy M, Pacchione S, Yaciuk P, Dallas PB and Moran E: Two related ARID family proteins are alternative subunits of human SWI/SNF complexes. Biochem J. 383:319–325. 2004.PubMed/NCBI View Article : Google Scholar | |
Yan HB, Wang XF, Zhang Q, Tang ZQ, Jiang YH, Fan HZ, Sun Y, Yang PY and Liu F: Reduced expression of the chromatin remodeling gene ARID1A enhances gastric cancer cell migration and invasion via downregulation of E-cadherin transcription. Carcinogenesis. 35:867–876. 2014.PubMed/NCBI View Article : Google Scholar | |
Saghafinia S, Mina M, Riggi N, Hanahan D and Ciriello G: Pan-cancer landscape of aberrant DNA methylation across human tumors. Cell Rep. 25:1066–1080.e8. 2018.PubMed/NCBI View Article : Google Scholar | |
Kamińska K, Nalejska E, Kubiak M, Wojtysiak J, Żołna Ł, Kowalewski J and Lewandowska MA: Prognostic and predictive epigenetic biomarkers in oncology. Mol Diagn Ther. 23:83–95. 2019.PubMed/NCBI View Article : Google Scholar | |
Tsai HC and Baylin SB: Cancer epigenetics: Linking basic biology to clinical medicine. Cell Res. 21:502–517. 2011.PubMed/NCBI View Article : Google Scholar | |
Heinz S, Romanoski CE, Benner C and Glass CK: The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol. 16:144–154. 2015.PubMed/NCBI View Article : Google Scholar | |
Tillo D, Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Field Y, Lieb JD, Widom J, Segal E and Hughes TR: High nucleosome occupancy is encoded at human regulatory sequences. PLoS One. 5(e9129)2010.PubMed/NCBI View Article : Google Scholar | |
Sun X, Chuang JC, Kanchwala M, Wu L, Celen C, Li L, Liang H, Zhang S, Maples T, Nguyen LH, et al: Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration. Cell Stem Cell. 18:456–466. 2016.PubMed/NCBI View Article : Google Scholar | |
Wu S, Zhang R and Bitler BG: Arid1a controls tissue regeneration. Stem Cell Investig. 3(35)2016.PubMed/NCBI View Article : Google Scholar | |
Lei I, West J, Yan Z, Gao X, Fang P, Dennis JH, Gnatovskiy L, Wang W, Kingston RE and Wang Z: BAF250a protein regulates nucleosome occupancy and histone modifications in priming embryonic stem cell differentiation. J Biol Chem. 290:19343–19352. 2015.PubMed/NCBI View Article : Google Scholar | |
Gao X, Tate P, Hu P, Tjian R, Skarnes WC and Wang Z: ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci USA. 105:6656–6661. 2008.PubMed/NCBI View Article : Google Scholar | |
Han L, Madan V, Mayakonda A, Dakle P, Woon TW, Shyamsunder P, Nordin HBM, Cao Z, Sundaresan J, Lei I, et al: Chromatin remodeling mediated by ARID1A is indispensable for normal hematopoiesis in mice. Leukemia. 33:2291–2305. 2019.PubMed/NCBI View Article : Google Scholar | |
Hota SK, Johnson JR, Verschueren E, Thomas R, Blotnick AM, Zhu Y, Sun X, Pennacchio LA, Krogan NJ and Bruneau BG: Dynamic BAF chromatin remodeling complex subunit inclusion promotes temporally distinct gene expression programs in cardiogenesis. Development. 146(pii: dev174086)2019.PubMed/NCBI View Article : Google Scholar | |
Lei I, Gao X, Sham MH and Wang Z: SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development. J Biol Chem. 287:24255–24262. 2012.PubMed/NCBI View Article : Google Scholar | |
Watanabe R, Ui A, Kanno S, Ogiwara H, Nagase T, Kohno T and Yasui A: SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability. Cancer Res. 74:2465–2475. 2014.PubMed/NCBI View Article : Google Scholar | |
Shen J, Peng Y, Wei L, Zhang W, Yang L, Lan L, Kapoor P, Ju Z, Mo Q, Shih IM, et al: ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov. 5:752–767. 2015.PubMed/NCBI View Article : Google Scholar | |
Lakshminarasimhan R, Andreu-Vieyra C, Lawrenson K, Duymich CE, Gayther SA, Liang G and Jones PA: Down-regulation of ARID1A is sufficient to initiate neoplastic transformation along with epigenetic reprogramming in non-tumorigenic endometriotic cells. Cancer Lett. 401:11–19. 2017.PubMed/NCBI View Article : Google Scholar | |
Miranda TB and Jones PA: DNA methylation: The nuts and bolts of repression. J Cell Physiol. 213:384–390. 2007.PubMed/NCBI View Article : Google Scholar | |
Jang HS, Shin WJ, Lee JE and Do JT: CpG and Non-CpG methylation in epigenetic gene regulation and brain function. Genes (Basel). 8(pii: E148)2017.PubMed/NCBI View Article : Google Scholar | |
Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, et al: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA. 91:9700–9704. 1994.PubMed/NCBI View Article : Google Scholar | |
Baylin SB, Makos M, Wu JJ, Yen RW, De Bustros A, Vertino P and Nelkin BD: Abnormal patterns of DNA methylation in human neoplasia: Potential consequences for tumor progression. Cancer Cells. 3:383–390. 1991.PubMed/NCBI | |
Makos M, Nelkin BD, Lerman MI, Latif F, Zbar B and Baylin SB: Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc Natl Acad Sci USA. 89:1929–1933. 1992.PubMed/NCBI View Article : Google Scholar | |
Qu Y, Dang S and Hou P: Gene methylation in gastric cancer. Clin Chim Acta. 424:53–65. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Sun Q, Shan M, Niu M, Liu T, Xia B, Liang X, Wei W, Sun S, Zhang Y, et al: Promoter hypermethylation of ARID1A gene is responsible for its low mRNA expression in many invasive breast cancers. PLoS One. 8(e53931)2013.PubMed/NCBI View Article : Google Scholar | |
Aso T, Uozaki H, Morita S, Kumagai A and Watanabe M: Loss of ARID1A, ARID1B, and ARID2 expression during progression of gastric cancer. Anticancer Res. 35:6819–6827. 2015.PubMed/NCBI | |
Xie H, Chen P, Huang HW, Liu LP and Zhao F: Reactive oxygen species downregulate ARID1A expression via its promoter methylation during the pathogenesis of endometriosis. Eur Rev Med Pharmacol Sci. 21:4509–4515. 2017.PubMed/NCBI | |
Ibragimova I, Maradeo ME, Dulaimi E and Cairns P: Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC. Epigenetics. 8:486–493. 2013.PubMed/NCBI View Article : Google Scholar | |
Xiao W, Lou N, Ruan H, Bao L, Xiong Z, Yuan C, Tong J, Xu G, Zhou Y, Qu Y, et al: Mir-144-3p promotes cell proliferation, metastasis, sunitinib resistance in clear cell renal cell carcinoma by downregulating ARID1A. Cell Physiol Biochem. 43:2420–2433. 2017.PubMed/NCBI View Article : Google Scholar | |
Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993.PubMed/NCBI View Article : Google Scholar | |
He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.PubMed/NCBI View Article : Google Scholar | |
Iorio MV and Croce CM: MicroRNAs in cancer: Small molecules with a huge impact. J Clin Oncol. 27:5848–5856. 2009.PubMed/NCBI View Article : Google Scholar | |
Yang F, Xu Y, Liu C, Ma C, Zou S, Xu X, Jia J and Liu Z: NF-κB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression. Cell Death Dis. 9(12)2018.PubMed/NCBI View Article : Google Scholar | |
Lu WC, Liu CJ, Tu HF, Chung YT, Yang CC, Kao SY, Chang KW and Lin SC: miR-31 targets ARID1A and enhances the oncogenicity and stemness of head and neck squamous cell carcinoma. Oncotarget. 7:57254–57267. 2016.PubMed/NCBI View Article : Google Scholar | |
Wang N, Zhou Y, Zheng L and Li H: MiR-31 is an independent prognostic factor and functions as an oncomir in cervical cancer via targeting ARID1A. Gynecol Oncol. 134:129–137. 2014.PubMed/NCBI View Article : Google Scholar | |
Yang Y, Zhao X and Li HX: MiR-221 and miR-222 simultaneously target ARID1A and enhance proliferation and invasion of cervical cancer cells. Eur Rev Med Pharmacol Sci. 20:1509–1515. 2016.PubMed/NCBI | |
Li ZY, Zhu SS, Chen XJ, Zhu J, Chen Q, Zhang YQ, Zhang CL, Guo TT and Zhang LM: ARID1A suppresses malignant transformation of human pancreatic cells via mediating senescence-associated miR-503/CDKN2A regulatory axis. Biochem Biophys Res Commun. 493:1018–1025. 2017.PubMed/NCBI View Article : Google Scholar | |
Kim YS, Jeong H, Choi JW, Oh HE and Lee JH: Unique characteristics of ARID1A mutation and protein level in gastric and colorectal cancer: A meta-analysis. Saudi J Gastroenterol. 23:268–274. 2017.PubMed/NCBI View Article : Google Scholar | |
Lichner Z, Scorilas A, White NM, Girgis AH, Rotstein L, Wiegand KC, Latif A, Chow C, Huntsman D and Yousef GM: The chromatin remodeling gene ARID1A is a new prognostic marker in clear cell carcinoma. Am J Pathol. 182:1163–1170. 2013.PubMed/NCBI View Article : Google Scholar | |
Takeda T, Banno K, Okawa R, Yanokura M, Iijima M, Irie-Kunitomi H, Nakamura K, Iida M, Adachi M, Umene K, et al: ARID1A gene mutation in ovarian and endometrial cancers (Review). Oncol Rep. 35:607–613. 2016.PubMed/NCBI View Article : Google Scholar | |
Dawson MA and Kouzarides T: Cancer epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012.PubMed/NCBI View Article : Google Scholar | |
Okawa R, Banno K, Iida M, Yanokura M, Takeda T, Iijima M, Kunitomi-Irie H, Nakamura K, Adachi M, Umene K, et al: Aberrant chromatin remodeling in gynecological cancer. Oncol Lett. 14:5107–5113. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Wysocka J, Perlin JR, Leonelli L, Allis CD and Coonrod SA: Linking covalent histone modifications to epigenetics: The rigidity and plasticity of the marks. Cold Spring Harb Symp Quant Biol. 69:161–169. 2004.PubMed/NCBI View Article : Google Scholar | |
Guan B, Mao TL, Panuganti PK, Kuhn E, Kurman RJ, Maeda D, Chen E, Jeng YM, Wang TL and Shih IeM: Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am J Surg Pathol. 35:625–632. 2011.PubMed/NCBI View Article : Google Scholar | |
He F, Li J, Xu JF, Zhang S, Xu Y, Zhao W, Yin Z and Wang X: Decreased expression of ARID1A associates with poor prognosis and promotes metastases of hepatocellular carcinoma. J Exp Clin Cancer Res. 34(47)2015.PubMed/NCBI View Article : Google Scholar | |
Kim KJ, Jung HY, Oh MH, Cho H, Lee JH, Lee HJ, Jang SH and Lee MS: Loss of ARID1A expression in gastric cancer: Correlation with mismatch repair deficiency and clinicopathologic features. J Gastric Cancer. 15:201–208. 2015.PubMed/NCBI View Article : Google Scholar | |
Mamo A, Cavallone L, Tuzmen S, Chabot C, Ferrario C, Hassan S, Edgren H, Kalliomeni O, Aleynikova O, Przybytkowski E, et al: An integrated genomic approach identifies ARID1A as a candidate tumor-suppressor gene in breast cancer. Oncogene. 31:2090–2100. 2012.PubMed/NCBI View Article : Google Scholar | |
Bosse T, ter Haar NT, Seeber LM, v Diest PJ, Hes FJ, Vasen HF, Nout RA, Creutzberg CL, Morreau H and Smit VT: Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations, TP53 and microsatellite instability in endometrial cancer. Mod Pathol. 26:1525–1535. 2013.PubMed/NCBI View Article : Google Scholar | |
Lee D, Yu EJ, Ham IH, Hur H and Kim YS: AKT-inhibition is an effective treatment strategy in ARID1A-deficient gastric cancer cells. Onco Targets Ther. 10:4153–4159. 2017.PubMed/NCBI View Article : Google Scholar | |
Samartzis EP, Gutsche K, Dedes KJ, Fink D, Stucki M and Imesch P: Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition. Oncotarget. 5:5295–5303. 2014.PubMed/NCBI View Article : Google Scholar | |
Guan B, Wang TL and Shih IeM: ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 71:6718–6727. 2011.PubMed/NCBI View Article : Google Scholar | |
Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, Maitra A and Pollack JR: Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci USA. 109:E252–E259. 2012.PubMed/NCBI View Article : Google Scholar | |
Xiao W, Awadallah A and Xin W: Loss of ARID1A/BAF250a expression in ovarian endometriosis and clear cell carcinoma. Int J Clin Exp Pathol. 5:642–650. 2012.PubMed/NCBI | |
Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A, Kool M, Pfister S, Cho YJ, Zhao K and Crabtree GR: BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature. 497:624–627. 2013.PubMed/NCBI View Article : Google Scholar | |
Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W, Kashanchi F and Shiekhattar R: BRCA1 is associated with a human SWI/SNF-related complex: Linking chromatin remodeling to breast cancer. Cell. 102:257–265. 2000.PubMed/NCBI View Article : Google Scholar | |
Putra J and Suriawinata AA: Clinical significance of loss of ARID1A expression in colorectal and small intestinal carcinoma. Clin Transl Gastroenterol. 6(e131)2015.PubMed/NCBI View Article : Google Scholar | |
Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, Chan TL, Kan Z, Chan AS, Tsui WY, et al: Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 43:1219–1223. 2011.PubMed/NCBI View Article : Google Scholar | |
Cho H, Kim JS, Chung H, Perry C, Lee H and Kim JH: Loss of ARID1A/BAF250a expression is linked to tumor progression and adverse prognosis in cervical cancer. Hum Pathol. 44:1365–1374. 2013.PubMed/NCBI View Article : Google Scholar | |
Katagiri A, Nakayama K, Rahman MT, Rahman M, Katagiri H, Ishikawa M, Ishibashi T, Iida K, Otsuki Y, Nakayama S and Miyazaki K: Frequent loss of tumor suppressor ARID1A protein expression in adenocarcinomas/adenosquamous carcinomas of the uterine cervix. Int J Gynecol Cancer. 22:208–212. 2012.PubMed/NCBI View Article : Google Scholar | |
Ayhan A, Mao TL, Seckin T, Wu CH, Guan B, Ogawa H, Futagami M, Mizukami H, Yokoyama Y, Kurman RJ and Shih IeM: Loss of ARID1A expression is an early molecular event in tumor progression from ovarian endometriotic cyst to clear cell and endometrioid carcinoma. Int J Gynecol Cancer. 22:1310–1315. 2012.PubMed/NCBI View Article : Google Scholar | |
Yamamoto S, Tsuda H, Takano M, Tamai S and Matsubara O: Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod Pathol. 25:615–624. 2012.PubMed/NCBI View Article : Google Scholar | |
Yang L, Wei S, Zhao R, Wu Y, Qiu H and Xiong H: Loss of ARID1A expression predicts poor survival prognosis in gastric cancer: A systematic meta-analysis from 14 studies. Sci Rep. 6(28919)2016.PubMed/NCBI View Article : Google Scholar | |
Ahn DH, Javle M, Ahn CW, Jain A, Mikhail S, Noonan AM, Ciombor K, Wu C, Shroff R, Chen JL and Bekaii-Saab T: Next-generation sequencing survey of biliary tract cancer reveals the association between tumor somatic variants and chemotherapy resistance. Cancer. 122:3657–3666. 2016.PubMed/NCBI View Article : Google Scholar | |
Balbás-Martinez C, Rodriguez-Pinilla M, Casanova A, Dominguez O, Pisano DG, Gómez G, Lloreta J, Lorente JA, Malats N and Real FX: ARID1A alterations are associated with FGFR3-wild type, poor-prognosis, urothelial bladder tumors. PLoS One. 8(e62483)2013.PubMed/NCBI View Article : Google Scholar | |
Cho HD, Lee JE, Jung HY, Oh MH, Lee JH, Jang SH, Kim KJ, Han SW, Kim SY, Kim HJ, et al: Loss of tumor supressor ARID1A protein expression correlates with poor prognosis in patients with primary breast cancer. J Breast Cancer. 18:339–346. 2015.PubMed/NCBI View Article : Google Scholar | |
Drage MG, Tippayawong M, Agoston TA, Zheng Y, Bueno R, Hornick JL, Odge RD and Srivastava A: Morphological features and prognostic significance of ARID1A-deficient esophageal adenocarcinomas. Arch Pathol Lab Med. 141:970–977. 2017.PubMed/NCBI View Article : Google Scholar | |
Faraj SF, Chaux A, Gonzales-Roibon N, Munari E, Ellis C, Driscoll T, Schoenberg MP, Bivalacqua TJ, Shih IeM and Netto GJ: ARID1A immunohistochemistry improves outcome prediction in invasive urothelial carcinoma of urinary bladder. Hum Pathol. 45:2233–2239. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang DD, Chen YB, Pan K, Wang W, Chen SP, Chen JG, Zhao JJ, Lv L, Pan QZ, Li YQ and Wang QJ: Decreased expression of the ARID1A gene is associated with poor prognosis in primary gastric cancer. PLoS One. 7(e40364)2012.PubMed/NCBI View Article : Google Scholar | |
Wei XL, Wang DS, Xi SY, Wu WJ, Chen DL, Zeng ZL, Wang RY, Huang YX, Jin Y, Wang F, et al: Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer. World J Gastroenterol. 20:18404–18412. 2014.PubMed/NCBI View Article : Google Scholar | |
Wiegand KC, Hennesy BT, Leung S, Wang Y, Ju Z, McGahren M, Kalloger SE, Finlayson S, Stemke-Hale K, Lu Y, et al: A functional proteogenomic analysis of endometrioid and clear cell carcinomas using reverse phase protein array and mutation analysis: Protein expression is histotype-specific and loss of ARID1A/BAF250a is associated with AKT phosphorylation. BMC Cancer. 14(120)2014.PubMed/NCBI View Article : Google Scholar | |
Cajuso T, Hӓnninen UA, Kondelin J, Gylfe AE, Tanskanen T, Katainen R, Pitkӓnen E, Ristolainen H, Kaasinen E, Taipale M, et al: Exome sequencing reveals frequent inactivating mutations in ARID1A, ARID1B, ARID2 and ARID4A in microsatellite unstable colorectal cancer. Int J Cancer. 135:611–623. 2014.PubMed/NCBI View Article : Google Scholar | |
Wiegand KC, Sy K, Kalloger SE, Li-Chang H, Woods R, Kumar A, Streutker CJ, Hafezi-Bakhtiari S, Zhou C, Lim HJ, et al: ARID1A/BAF250a as a prognostic marker for gastric carcinoma: A study of 2 cohorts. Hum Pathol. 45:1258–1268. 2014.PubMed/NCBI View Article : Google Scholar | |
Zhang L, Wang C, Yu S, Jia C, Yan J, Lu Z and Chen J: Loss of ARID1A expression correlates with tumor differentiation and tumor progression stage in pancreatic ductal adenocarcinoma. Technol Cancer Res Treat. 17(1533034618754475)2018.PubMed/NCBI View Article : Google Scholar | |
Tan ZX, Liu HJ and Hou B: Decreased expression of ARID1A is related to the poor prognosis of glioma patients. Int J Clin Exp Pathol. 9:2009–2014. 2016. | |
Nastase A, Teo JY, Heng HL, Ng CC, Myint SS, Rajaseragan V, Loh JL, Lee SY, Ooi LL, Chung AY, et al: Genomic and proteomic characterization of ARID1A chromatin remodeller in ampullary tumors. Am J Cancer Res. 7:484–502. 2017.PubMed/NCBI | |
Itamochi H, Oumi N, Oishi T, Shoji T, Fujiwara J, Sugiyama T, Suzuki M, Kigawa J and Harada T: Loss of ARID1A expression is associated with poor prognosis in patients with stage I/II clear cell carcinoma of the ovary. Int J Clin Oncol. 20:967–973. 2015.PubMed/NCBI View Article : Google Scholar | |
Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, Wu R, Chen C, Li X, Zhou L, et al: Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet. 43:875–878. 2011.PubMed/NCBI View Article : Google Scholar | |
Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM, Lucas DJ, Niknafs N, Guthrie VB, Maitra A, Argani , et al: Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet. 45:1470–1473. 2013.PubMed/NCBI View Article : Google Scholar | |
Sausen M, Leary RJ, Jones S, Wu J, Reynolds PC, Liu X, Blackford A, Parmigiani G, Diaz LA Jr, Papadopoulos N, et al: Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat Genet. 45:12–17. 2013.PubMed/NCBI View Article : Google Scholar | |
Illumina: An introduction to Next-Generation Sequencing Technology. Illumina, Inc., 2017. https://www.illumina.com/documents/products/illumina_sequencing_introduction.pdf. | |
Zhou X, Ren L, Meng Q, Li Y, Yu Y and Yu J: The next-generation sequencing technology and application. Protein Cell. 6:520–536. 2010.PubMed/NCBI View Article : Google Scholar | |
Huang HN, Lin MC, Huang WC, Chiang YC and Kuo KT: Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations and ZNF217 amplification in ovarian clear cell carcinoma. Mod Pathol. 27:983–990. 2014.PubMed/NCBI View Article : Google Scholar | |
Lai CR, Hsu CY, Chen YJ, Yen MS, Chao KC and Li AF: Ovarian cancers arising from endometriosis: A microenvironmental biomarker study including ER, HNF1ß, p53, PTEN, BAF250a, and COX-2. J Chin Med Assoc. 76:629–634. 2013.PubMed/NCBI View Article : Google Scholar | |
Lowery WJ, Schildkraut JM, Akushevich L, Bentley R, Marks JR, Huntsman D and Berchuck A: Loss of ARID1A-associated protein expression is a frequent event in clear cell and endometrioid ovarian cancers. Int J Gynecol Cancer. 22:9–14. 2012.PubMed/NCBI View Article : Google Scholar | |
Maeda D, Mao TL, Fukayama M, Nakagawa S, Yano T, Taketani Y and Shih leM: Clinicopathological significance of loss of ARID1A immunoreactivity in ovarian clear cell carcinoma. Int J Mol Sci. 11:5120–5128. 2010.PubMed/NCBI View Article : Google Scholar | |
Wu RC, Ayhan A, Maeda D, Kim KR, Clarke BA, Shaw P, Chui MH, Rosen B, Shih leM and Wang TL: Frequent somatic mutations of the telomerase reverse transcriptase promoter in ovarian clear cell carcinoma but not in other major types of gynecologic malignancies. J Pathol. 232:473–481. 2014.PubMed/NCBI View Article : Google Scholar | |
Yamamoto S, Tsuda H, Takano M, Tamai S and Matsubara O: PIK3CA mutations and loss of ARID1A protein expression are early events in the development of cystic ovarian clear cell adenocarcinoma. Virchows Arch. 460:77–87. 2012.PubMed/NCBI View Article : Google Scholar | |
Murakami R, Matsumura N, Brown JB, Higasa K, Tsutsumi T, Kamada M, Abou-Taleb H, Hosoe Y, Kitamura S, Yamaguchi K, et al: Exome sequencing landscape analysis in ovarian clear cell carcinoma shed light on key chromosomal regions and mutation gene networks. Am J Pathol. 187:2246–2258. 2017.PubMed/NCBI View Article : Google Scholar | |
Katagiri A, Nakayama K, Rahman MT, Rahman M, Katagiri H, Nakayama N, Ishikawa M, Ishibashi T, Iida K, Kobayashi H, et al: Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma. Mod Pathol. 25:282–288. 2012.PubMed/NCBI View Article : Google Scholar | |
Samartzis EP, Samartzis N, Noske A, Fedier A, Caduff R, Dedes KJ, Fink D and Imesch P: Loss of ARID1A/BAF250a-expression in endometriosis: A biomarker for risk of carcinogenic transformation? Mod Pathol. 25:885–892. 2012.PubMed/NCBI View Article : Google Scholar | |
McConechy MK, Ding J, Senz J, Yang W, Melnyk N, Tone AA, Prentice LM, Wiegand KC, McAlpine JN, Shah SP, et al: Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles. Mod Pathol. 27:128–134. 2014.PubMed/NCBI View Article : Google Scholar | |
Wu CH, Mao TL, Vang R, Ayhan A, Wang TL, Kurman RJ and Shih leM: Endocervical-type mucinous borderline tumors are related to endometrioid tumors based on mutation and loss of expression of ARID1A. Int J Gynecol Pathol. 31:297–303. 2012.PubMed/NCBI View Article : Google Scholar | |
Choi JY, Han HH, Kim YT, Lee JH, Kim BG, Kang S and Cho NH: Ovarian clear cell carcinoma sub-typing by ARID1A expression. Yonsei Med J. 58:59–66. 2017.PubMed/NCBI View Article : Google Scholar | |
Yokoyama Y, Matsushita Y, Shigeto T, Futagami M and Mizunuma H: Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer. J Gynecol Oncol. 25:58–63. 2014.PubMed/NCBI View Article : Google Scholar | |
Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, et al: Integrated genomic characterization of endometrial carcinoma. Nature 497: 67-73, 2013. | |
Liang H, Cheung LW, Li J, Ju Z, Yu S, Stemke-Hale K, Dogruluk T, Lu Y, Liu X, Gu C, et al: Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 22:2120–2129. 2012.PubMed/NCBI View Article : Google Scholar | |
Fadare O, Renshaw IL and Liang SX: Does the loss of ARID1A (BAF-250a) expression in endometrial clear cell carcinomas have any clinicopathological significance? A pilot assessment. J Cancer. 3:129–136. 2012.PubMed/NCBI View Article : Google Scholar | |
Fadare O, Gwin K, Desouki MM, Crispens MA, Jones HW III, Khabele D, Liang SX, Zheng W, Mohammed K, Hecht JL and Parkash V: The clinicopathologic significance of p53 and BAF-250a (ARID1A) expression in clear cell carcinoma of the endometrium. Mod Pathol. 26:1101–1110. 2013.PubMed/NCBI View Article : Google Scholar | |
Werner HM, Berg A, Wik E, Birkeland E, Krakstad C, Kusonmano K, Petersen K, Kalland KH, Oyan AM, Akslen LA, et al: ARID1A loss is prevalent in endometrial hyperplasia with atypia and low-grade endometrioid carcinomas. Mod Pathol. 26:428–434. 2013.PubMed/NCBI View Article : Google Scholar | |
Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, Scott DW, Steidl C, Wiseman SM, Gascoyne RD, Gilks B and Huntsman DG: Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 224:328–333. 2011.PubMed/NCBI View Article : Google Scholar | |
Rahman M, Nakayama K, Rahman MT, Katagiri H, Katagiri A, Ishibashi T, Ishikawa M, Iida K and Miyazaki K: Clinicopathologic analysis of loss of AT-Rich interactive domain 1A expression in endometrial cancer. Hum Pathol. 44:103–109. 2013.PubMed/NCBI View Article : Google Scholar | |
Cornen S, Adelaide J, Bertucci F, Finetti P, Guille A, Birnbaum DJ, Birnbaum D and Chaffanet M: Mutations and deletions of ARID1A in breast tumors. Oncogene. 31:4255–4256. 2012.PubMed/NCBI View Article : Google Scholar | |
Zhang X, Zhang Y, Yang Y, Niu M, Sun S, Ji H, Ma Y, Yao G, Jiang Y, Shan M, et al: Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance. Cancer Epidemiol. 36:288–293. 2012.PubMed/NCBI View Article : Google Scholar | |
Zhao J, Liu C and Zhao Z: ARID1A: A potential prognostic factor for breast cancer. Tumour Biol. 35:4813–4819. 2014.PubMed/NCBI View Article : Google Scholar | |
Ünçel M, Diniz G, Aköz G, Ekin ZY, Sayhan S, Yardım S and Salimoğlu S: Loss of nuclear ARID-1A expressions is associated with hormone receptor status in breast cancers. Eur J Breast Health. 15:125–129. 2019.PubMed/NCBI View Article : Google Scholar | |
Momozawa Y, Iwasaki Y, Parsons MT, Kamatani Y, Takahashi A, Tamura C, Katagiri T, Yoshida T, Nakamura S, Sugano K, et al: Germline pathogenic variants of 11 breast cancer genes in 7,051 Japanese patients and 11,241 controls. Nat Commun. 9(4083)2018.PubMed/NCBI View Article : Google Scholar | |
Rajendran KB and Deng C: Characterization of potential driver mutations involved in human breast cancer by computational approaches. Oncotarget. 8:50252–50272. 2017.PubMed/NCBI View Article : Google Scholar | |
Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A, et al: Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 44:570–574. 2012.PubMed/NCBI View Article : Google Scholar | |
Abe H, Maeda D, Hino R, Otake Y, Isogai M, Ushiku AS, Matsusaka K, Kunita A, Ushiku T, Uozaki H, et al: ARID1A expression loss in gastric cancer: Pathway-dependent roles with and without Epstein-Barr virus infection and microsatellite instability. Virchows Arch. 461:367–377. 2012.PubMed/NCBI View Article : Google Scholar | |
Han N, Kim MA, Lee HS and Kim WH: Loss of ARID1A expression is related to gastric cancer progression, Epstein-Barr Virus infection, and mismatch repair deficiency. Appl Immunohistochem Mol Morphol. 24:320–325. 2016.PubMed/NCBI View Article : Google Scholar | |
Ibarrola-Villava M, Llorca-Cardeñosa MJ, Tarazona N, Mongort C, Fleitas T, Perez-Fidalgo JA, Roselló S, Navarro S, Ribas G and Cervantes A: Deregulation of ARID1A, CDH1, cMET and PIK3CA and target-related microRNA expression in gastric cancer. Oncotarget. 6:26935–26945. 2015.PubMed/NCBI View Article : Google Scholar | |
Kim YB, Ham IH, Hur H and Lee D: Various ARID1A expression patterns and their clinical significance in gastric cancers. Hum Pathol. 49:61–70. 2016.PubMed/NCBI View Article : Google Scholar | |
Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, et al: Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 150:1107–1120. 2012.PubMed/NCBI View Article : Google Scholar | |
Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, Aoki M, Hosono N, Kubo M, Miya M, et al: Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 44:760–764. 2012.PubMed/NCBI View Article : Google Scholar | |
Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, et al: Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 44:694–698. 2012.PubMed/NCBI View Article : Google Scholar | |
Streppel MM, Lata S, DelaBastide M, Montgomery EA, Wang JS, Canto MI, Macgregor-Das AM, Pai S, Morsink FH, Offerhaus GJ, et al: Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus. Oncogene. 33:347–357. 2014.PubMed/NCBI View Article : Google Scholar | |
Lee SY, Kim DW, Lee HS, Ihn MH, Oh HK, Park DJ, Kim HH and Kang SB: Loss of AT-rich interactive domain 1A expression in gastrointestinal malignancies. Oncology. 88:234–240. 2015.PubMed/NCBI View Article : Google Scholar | |
Sen M, Wang X, Hamdan FH, Rapp J, Eggert J, Kosinsky RL, Wegwitz F, Kutschat AP, Younesi FS, Gaedcke J, et al: ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells. Clin Epigenet. 11(92)2019.PubMed/NCBI View Article : Google Scholar | |
Guo G, Sun X, Chen C, Wu S, Huang P, Li Z, Dean M, Huang Y, Jia W, Zhou Q, et al: Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet. 45:1459–1463. 2013.PubMed/NCBI View Article : Google Scholar | |
Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, et al: MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. N Engl J Med. 367:826–833. 2012.PubMed/NCBI View Article : Google Scholar | |
Giulino-Roth L, Wang K, MacDonald TY, Mathew S, Tam Y, Cronin MT, Palmer G, Lucena-Silva N, Pedrosa F, Pedrosa M, et al: Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood. 120:5181–5184. 2012.PubMed/NCBI View Article : Google Scholar | |
Weaver IC, Korgan AC, Lee K, Wheeler RV, Hundert AS and Goguen D: Stress and the emerging roles of chromatin remodeling in signal integration and stable transmission of reversible phenotypes. Front Behav Neurosci. 11(41)2017.PubMed/NCBI View Article : Google Scholar | |
Bitler BG, Wu S, Park PH, Hai Y, Aird KM, Wang Y, Zhai Y, Kossenkov AV, Vara-Ailor A, Rauscher FJ III, et al: ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol. 19:962–973. 2017.PubMed/NCBI View Article : Google Scholar | |
Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, Schultz DC, Liu Q, Shih IeM, Conejo-Garcia JR, et al: Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 21:231–238. 2015.PubMed/NCBI View Article : Google Scholar |