1
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49.
2024.PubMed/NCBI View Article : Google Scholar
|
2
|
Al-Juboori SI, Vadakekolathu J, Idri S,
Wagner S, Zafeiris D, Pearson JR, Almshayakhchi R, Caraglia M,
Desiderio V, Miles AK, et al: PYK2 promotes HER2-positive breast
cancer invasion. J Exp Clin Cancer Res. 38(210)2019.PubMed/NCBI View Article : Google Scholar
|
3
|
Łukasiewicz S, Czeczelewski M, Forma A,
Baj J, Sitarz R and Stanisławek A: Breast cancer-epidemiology, risk
factors, classification, prognostic markers, and current treatment
Strategies-an updated review. Cancers (Basel).
13(4287)2021.PubMed/NCBI View Article : Google Scholar
|
4
|
Larkin L: Breast cancer genetics and risk
assessment: An overview for the clinician. Climacteric. 26:229–234.
2023.PubMed/NCBI View Article : Google Scholar
|
5
|
Park JH, Jonas SF, Bataillon G,
Criscitiello C, Salgado R, Loi S, Viale G, Lee HJ, Dieci MV, Kim
SB, et al: Prognostic value of tumor-infiltrating lymphocytes in
patients with early-stage triple-negative breast cancers (TNBC) who
did not receive adjuvant chemotherapy. Ann Oncol. 30:1941–1949.
2019.PubMed/NCBI View Article : Google Scholar
|
6
|
Aine M, Boyaci C, Hartman J, Häkkinen J,
Mitra S, Campos AB, Nimeus E, Ehinger A, Vallon-Christersson J,
Borg Å, et al: Molecular analyses of triple-negative breast cancer
in the young and elderly. Breast Cancer Res. 23(20)2021.PubMed/NCBI View Article : Google Scholar
|
7
|
Lehmann BD, Pietenpol JA and Tan AR:
Triple-negative breast cancer: Molecular subtypes and new targets
for therapy. Am Soc Clin Oncol Educ Book. e31–e39. 2015.PubMed/NCBI View Article : Google Scholar
|
8
|
Zboril EK, Grible JM, Boyd DC, Hairr NS,
Leftwich TJ, Esquivel MF, Duong AK, Turner SA, Ferreira-Gonzalez A,
Olex AL, et al: Stratification of tamoxifen synergistic
combinations for the treatment of ER+ breast cancer. Cancers
(Basel). 15(3179)2023.PubMed/NCBI View Article : Google Scholar
|
9
|
Höller A, Nguyen-Sträuli BD,
Frauchiger-Heuer H and Ring A: ‘Diagnostic and prognostic
biomarkers of luminal breast cancer: Where are We Now?’. Breast
Cancer (Dove Med Press). 15:525–540. 2023.PubMed/NCBI View Article : Google Scholar
|
10
|
Hirokawa N, Noda Y, Tanaka Y and Niwa S:
Kinesin superfamily motor proteins and intracellular transport. Nat
Rev Mol Cell Biol. 10:682–696. 2009.PubMed/NCBI View
Article : Google Scholar
|
11
|
Miki H, Okada Y and Hirokawa N: Analysis
of the kinesin superfamily: Insights into structure and function.
Trends Cell Biol. 15:467–476. 2005.PubMed/NCBI View Article : Google Scholar
|
12
|
Sun RF, He N, Zhang GY, Yu ZY, Li LS, Ma
ZJ and Jiao ZY: Combined inhibition of KIF11 and KIF15 as an
effective therapeutic strategy for gastric cancer. Curr Cancer Drug
Targets. 23:293–306. 2023.PubMed/NCBI View Article : Google Scholar
|
13
|
Zeng H, Li T, Zhai D, Bi J, Kuang X, Lu S,
Shan Z and Lin Y: ZNF367-induced transcriptional activation of
KIF15 accelerates the progression of breast cancer. Int J Biol Sci.
16:2084–2093. 2020.PubMed/NCBI View Article : Google Scholar
|
14
|
Gao X, Zhu L, Lu X, Wang Y, Li R and Jiang
G: KIF15 contributes to cell proliferation and migration in breast
cancer. Hum Cell. 33:1218–1228. 2020.PubMed/NCBI View Article : Google Scholar
|
15
|
Wang J, Wang D, Fei Z, Feng D, Zhang B,
Gao P, Hu G, Li W, Huang X, Chen D, et al: KIF15 knockdown
suppresses gallbladder cancer development. Eur J Cell Biol.
100(151182)2021.PubMed/NCBI View Article : Google Scholar
|
16
|
Ding L, Li B, Yu X, Li Z, Li X, Dang S, Lv
Q, Wei J, Sun H, Chen H, et al: KIF15 facilitates gastric cancer
via enhancing proliferation, inhibiting apoptosis, and predict poor
prognosis. Cancer Cell Int. 20(125)2020.PubMed/NCBI View Article : Google Scholar
|
17
|
Al Kufi SGJH, Emmerson J, Rosenqvist H,
Garcia CMM, Rios-Szwed DO and Wiese M: Absence of DEATH kinesin is
fatal for Leishmania mexicana amastigotes. Sci Rep.
12(3266)2022.PubMed/NCBI View Article : Google Scholar
|
18
|
Wang J, Guo X, Xie C and Jiang J: KIF15
promotes pancreatic cancer proliferation via the MEK-ERK signalling
pathway. Br J Cancer. 117:245–255. 2017.PubMed/NCBI View Article : Google Scholar
|
19
|
Wang Q, Han B, Huang W, Qi C and Liu F:
Identification of KIF15 as a potential therapeutic target and
prognostic factor for glioma. Oncol Rep. 43:1035–1044.
2020.PubMed/NCBI View Article : Google Scholar
|
20
|
Sheng J, Li C, Dong M and Jiang K:
Identification by comprehensive bioinformatics analysis of KIF15 as
a candidate risk gene for Triple-negative breast cancer. Cancer
Manag Res. 12:12337–12348. 2020.PubMed/NCBI View Article : Google Scholar
|
21
|
Shahin R and Aljamal S: Kinesin spindle
protein inhibitors in cancer: From high throughput screening to
novel therapeutic strategies. Future Sci OA.
8(FSO778)2022.PubMed/NCBI View Article : Google Scholar
|
22
|
Gibbs B, Douglas J, Wates R, McDonald P,
Whitaker A, Ndi C, Pathak H, Harned L, Neuenswander S, Broward M,
et al: Abstract 5334: Targeting the KIF15-TPX2 PPI to overcome
KIF11 inhibitor resistance in epithelial ovarian cancer. Cancer
Res. 83:5334. 2023.
|
23
|
Holliday DL and Speirs V: Choosing the
right cell line for breast cancer research. Breast Cancer Res.
13(215)2011.PubMed/NCBI View Article : Google Scholar
|
24
|
Fedele P, Orlando L and Cinieri S:
Targeting triple negative breast cancer with histone deacetylase
inhibitors. Expert Opin Investig Drugs. 26:1199–1206.
2017.PubMed/NCBI View Article : Google Scholar
|
25
|
Fathi SM, Alhammer AH and Ali IA: Testing
the cytotoxic potential of biosynthesized nanoparticles using
Conocarpus erectus Leaves against human breast cancer cells. AIP
Conf Proc. 2922(040008)2024.
|
26
|
Zaki NH, Ali AM, Al-Rubaiee GH and
Alhammer AH: Malaysian Anti-bacterial and Anti-tumoral activities
of spirulina platensis extracellular extract. J Med Health Sci.
18:11–16. 2022.
|
27
|
Ali SM, Al-Karam LQ and Alhammer AJN: In
Vitro cancer cells therapy with nano-gold depending on its optical
properties. NeuroQuantology. 20:57–61. 2022.PubMed/NCBI View Article : Google Scholar
|
28
|
Lafta FM, Mohammed RK, Alhammer AH and
Ahmed ME: Cytotoxic potential of Neem (Azadirachta indica A. Juss)
Oil. Tropical J Natural Product Res. 7:5436–5440. 2023.
|
29
|
Alhammer AH, Al-juboori SI and Mudhafar
SA: APR-246 enhances the anticancer effect of doxorubicin against
p53-mutant AsPC-1 pancreatic cancer cells. Baghdad Sci J.
21:2551–2560. 2024.
|
30
|
Nashaan FA, Al-Rawi MS, Alhammer AH, Rabie
AM and Tomma JH: Synthesis, characterization, and cytotoxic
activity of some imides from galloyl hydrazide. Eurasian Chem
Commun. 4:966–975. 2022.
|
31
|
Mohammed I, Alhammer AH and Arif IS: The
p53 reactivator PRIMA-1MET synergises with
5-fluorouracil to induce apoptosis in pancreatic cancer cells.
Invest New Drugs. 41:587–595. 2023.PubMed/NCBI View Article : Google Scholar
|
32
|
Ahmadiankia N, Bagheri M and Fazli MJAB:
Differential migration-related gene expression and altered cytokine
secretion in response to serum starvation in cultured MDA-MB-231
cells. Asian Biomed. 13:123–129. 2019.
|
33
|
Chen M, Huang J, Yang X, Liu B, Zhang W,
Huang L, Deng F, Ma J, Bai Y, Lu R, et al: Serum starvation induced
cell cycle synchronization facilitates human somatic cells
Reprogramming. PLoS One. 7(e28203)2012.PubMed/NCBI View Article : Google Scholar
|
34
|
Aghababazadeh M and Kerachian MA: Cell
fasting: Cellular response and application of serum starvation. J
Fasting Health. 2:147–150. 2014.
|
35
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
36
|
Lei S, Zheng R, Zhang S, Wang S, Chen R,
Sun K, Zeng H, Zhou J and Wei W: Global patterns of breast cancer
incidence and mortality: A population-based cancer registry data
analysis from 2000 to 2020. Cancer Commun (Lond). 41:1183–1194.
2021.PubMed/NCBI View Article : Google Scholar
|
37
|
Qiao Y, Chen J, Ma C, Liu Y, Li P, Wang Y,
Hou L and Liu Z: Increased KIF15 expression predicts a poor
prognosis in patients with lung adenocarcinoma. Cell Physiol
Biochem. 51:1–10. 2018.PubMed/NCBI View Article : Google Scholar
|
38
|
Alfarsi LH, Elansari R, Toss MS,
Diez-Rodriguez M, Nolan CC, Ellis IO, Rakha EA and Green AR:
Kinesin family member-18A (KIF18A) is a predictive biomarker of
poor benefit from endocrine therapy in early ER+ breast cancer.
Breast Cancer Res Treat. 173:93–102. 2019.PubMed/NCBI View Article : Google Scholar
|
39
|
Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim
C and Yeh JY: Small interfering RNA (siRNA)-based therapeutic
applications against viruses: Principles, potential, and
challenges. J Biomed Sci. 30(88)2023.PubMed/NCBI View Article : Google Scholar
|
40
|
Stapleton JA, Endo K, Fujita Y, Hayashi K,
Takinoue M, Saito H and Inoue T: Feedback control of protein
expression in mammalian cells by tunable synthetic translational
inhibition. ACS Synth Biol. 1:83–88. 2012.PubMed/NCBI View Article : Google Scholar
|
41
|
Wang Z, Chen M, Fang X, Hong H, Yao Y and
Huang H: KIF15 is involved in development and progression of
Burkitt lymphoma. Cancer Cell Int. 21(261)2021.PubMed/NCBI View Article : Google Scholar
|
42
|
Sun X, Chen M, Liao B and Liang Z:
Knockdown of KIF15 promotes cell apoptosis by activating crosstalk
of multiple pathways in ovarian cancer: Bioinformatic and
experimental analysis. Int J Clin Exp Pathol. 14:267–291.
2021.PubMed/NCBI
|
43
|
Bi H, Hou X, Shen Q, Liu Z, Zhu X, Ma L
and Lu J: Knockdown of KIF15 suppresses proliferation of prostate
cancer cells and induces apoptosis through PI3K/Akt signaling
pathway. Cell Death Discov. 9(326)2023.PubMed/NCBI View Article : Google Scholar
|
44
|
Mann BJ, Balchand SK and Wadsworth P:
Regulation of Kif15 localization and motility by the C-terminus of
TPX2 and microtubule dynamics. Mol Biol Cell. 28:65–75.
2017.PubMed/NCBI View Article : Google Scholar
|
45
|
Xue G and Hemmings BA: PKB/Akt-dependent
regulation of cell motility. J Natl Cancer Inst. 105:393–404.
2013.PubMed/NCBI View Article : Google Scholar
|
46
|
Malaby HLH, Dumas ME, Ohi R and Stumpff J:
Kinesin-binding protein ensures accurate chromosome segregation by
buffering KIF18A and KIF15. J Cell Biol. 218:1218–1234.
2019.PubMed/NCBI View Article : Google Scholar
|
47
|
Klejnot M, Falnikar A, Ulaganathan V,
Cross RA, Baas PW and Kozielski F: The crystal structure and
biochemical characterization of Kif15: A bifunctional molecular
motor involved in bipolar spindle formation and neuronal
development. Acta Crystallogr D Biol Crystallogr. 70:123–133.
2014.PubMed/NCBI View Article : Google Scholar
|
48
|
Dumas ME, Chen GY, Kendrick ND, Xu G,
Larsen SD, Jana S, Waterson AG, Bauer JA, Hancock W, Sulikowski GA
and Ohi R: Dual inhibition of Kif15 by oxindole and
quinazolinedione chemical probes. Bioorg Med Chem Lett. 29:148–154.
2019.PubMed/NCBI View Article : Google Scholar
|
49
|
Solon AL, Zaniewski TM, O'Brien P, Clasby
M, Hancock WO and Ohi R: Synergy between inhibitors of two mitotic
spindle assembly motors undermines an adaptive response. Mol Biol
Cell. 33(ar132)2022.PubMed/NCBI View Article : Google Scholar
|
50
|
Milic B, Chakraborty A, Han K, Bassik MC
and Block SM: KIF15 nanomechanics and kinesin inhibitors, with
implications for cancer chemotherapeutics. Proc Natl Acad Sci USA.
115:E4613–E4622. 2018.PubMed/NCBI View Article : Google Scholar
|