Open Access

Self-renewal molecular mechanisms of colorectal cancer stem cells

  • Authors:
    • Tianhui Pan
    • Jinghong Xu
    • Yongliang Zhu
  • View Affiliations

  • Published online on: November 30, 2016     https://doi.org/10.3892/ijmm.2016.2815
  • Pages:9-20
  • Copyright: © Pan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

0

Abstract

Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog-Gli (HH-GLI), specific roles mediated by cell surface markers and micro-environmental factors are involved in the regulation of self-renewal. The elucidation of the molecular mechanisms behind self-renewal may lead to the development of novel targeted interventions for the treatment of colorectal cancer.

Related Articles

Journal Cover

January 2017
Volume 39 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

2015 Impact Factor: 2.348
Ranked #22/123 Medicine Research and Experimental
(total number of cites)

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Pan, T., Xu, J., & Zhu, Y. (2017). Self-renewal molecular mechanisms of colorectal cancer stem cells. International Journal of Molecular Medicine, 39, 9-20. https://doi.org/10.3892/ijmm.2016.2815
MLA
Pan, T., Xu, J., Zhu, Y."Self-renewal molecular mechanisms of colorectal cancer stem cells". International Journal of Molecular Medicine 39.1 (2017): 9-20.
Chicago
Pan, T., Xu, J., Zhu, Y."Self-renewal molecular mechanisms of colorectal cancer stem cells". International Journal of Molecular Medicine 39, no. 1 (2017): 9-20. https://doi.org/10.3892/ijmm.2016.2815