1
|
Parkin DM, Bray F, Ferlay J and Pisani P:
Estimating the world cancer burden: Globocan 2000. Int J Cancer.
94:153–156. 2001. View
Article : Google Scholar : PubMed/NCBI
|
2
|
El-Serag HB: Hepatocellular carcinoma. N
Engl J Med. 365:1118–1127. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
El-Serag HB and Rudolph KL: Hepatocellular
carcinoma: epidemiology and molecular carcinogenesis.
Gastroenterology. 132:2557–2576. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Farazi PA and DePinho RA: Hepatocellular
carcinoma pathogenesis: from genes to environment. Nat Rev Cancer.
6:674–687. 2006. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Fattovich G, Stroffolini T, Zagni I and
Donato F: Hepatocellular carcinoma in cirrhosis: incidence and risk
factors. Gastroenterology. 127:S35–S50. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen CJ, Yang HI and Iloeje UH: Hepatitis
B virus DNA levels and outcomes in chronic hepatitis B. Hepatology.
49:S72–S84. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Forner A, Reig ME, de Lope CR and Bruix J:
Current strategy for staging and treatment: the BCLC update and
future prospects. Semin Liver Dis. 30:61–74. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
El-Serag HB, Marrero JA, Rudolph L and
Reddy KR: Diagnosis and treatment of hepatocellular carcinoma.
Gastroenterology. 134:1752–1763. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wysocki PJ: Targeted therapy of
hepatocellular cancer. Expert Opin Investig Drugs. 19:265–274.
2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu L, Cao Y, Chen C, et al: Sorafenib
blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and
induces tumor cell apoptosis in hepatocellular carcinoma model
PLC/PRF/5. Cancer Res. 66:11851–11858. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Llovet JM, Ricci S, Mazzaferro V, et al:
Sorafenib in advanced hepatocellular carcinoma. N Engl J Med.
359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cheng AL, Kang YK, Chen Z, et al: Efficacy
and safety of sorafenib in patients in the Asia-Pacific region with
advanced hepatocellular carcinoma: a phase III randomised,
double-blind, placebo-controlled trial. Lancet Oncol. 10:25–34.
2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Trojniak MP, Palozzo AC, Mazurek M and
Jirillo A: Sorafenib in hepatocellular carcinoma - a post marketing
evaluation. Immunopharmacol Immunotoxicol. 34:419–422. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lum L, Yao S, Mozer B, et al:
Identification of Hedgehog pathway components by RNAi in
Drosophila cultured cells. Science. 299:2039–2045. 2003.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Ashrafi K, Chang FY, Watts JL, et al:
Genome-wide RNAi analysis of Caenorhabditis elegans fat
regulatory genes. Nature. 421:268–272. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Iorns E, Lord CJ, Turner N and Ashworth A:
Utilizing RNA interference to enhance cancer drug discovery. Nat
Rev Drug Discov. 6:556–568. 2007. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Ahn BY, Elwi AN, Lee B, et al: Genetic
screen identifies insulin-like growth factor binding protein 5 as a
modulator of tamoxifen resistance in breast cancer. Cancer Res.
70:3013–3019. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tang TC, Man S, Xu P, et al: Development
of a resistance-like phenotype to sorafenib by human hepatocellular
carcinoma cells is reversible and can be delayed by metronomic UFT
chemotherapy. Neoplasia. 12:928–940. 2010.PubMed/NCBI
|
19
|
Berns K, Hijmans EM, Mullenders J, et al:
A large-scale RNAi screen in human cells identifies new components
of the p53 pathway. Nature. 428:431–437. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen KF, Chen HL, Tai WT, et al:
Activation of phosphatidylinositol 3-kinase/Akt signaling pathway
mediates acquired resistance to sorafenib in hepatocellular
carcinoma cells. J Pharmacol Exp Ther. 337:155–161. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Thorgeirsson SS and Grisham JW: Molecular
pathogenesis of human hepatocellular carcinoma. Nat Genet.
31:339–346. 2002. View Article : Google Scholar : PubMed/NCBI
|
22
|
Villanueva A, Newell P, Chiang DY,
Friedman SL and Llovet JM: Genomics and signaling pathways in
hepatocellular carcinoma. Semin Liver Dis. 27:55–76. 2007.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wilhelm SM, Carter C, Tang L, et al: BAY
43-9006 exhibits broad spectrum oral antitumor activity and targets
the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in
tumor progression and angiogenesis. Cancer Res. 64:7099–7109. 2004.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Kim JE, Ryoo BY, Ryu MH, et al: Sorafenib
for hepatocellular carcinoma according to Child-Pugh class of liver
function. Cancer Chemother Pharmacol. 68:1285–1290. 2011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Fire A, Xu S, Montgomery MK, Kostas SA,
Driver SE and Mello CC: Potent and specific genetic interference by
double-stranded RNA in Caenorhabditis elegans. Nature.
391:806–811. 1998. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Chapman EJ and Carrington JC:
Specialization and evolution of endogenous small RNA pathways. Nat
Rev Genet. 8:884–896. 2007. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Kamath RS, Fraser AG, Dong Y, et al:
Systematic functional analysis of the Caenorhabditis elegans
genome using RNAi. Nature. 421:231–237. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Pan Q, Bao LW, Kleer CG, et al: Protein
kinase C epsilon is a predictive biomarker of aggressive breast
cancer and a validated target for RNA interference anticancer
therapy. Cancer Res. 65:8366–8371. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang Z, Jiang G, Yang F and Wang J:
Knockdown of mutant K-ras expression by adenovirus-mediated siRNA
inhibits the in vitro and in vivo growth of lung cancer cells.
Cancer Biol Ther. 5:1481–1486. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yamashita A, Ohnishi T, Kashima I, Taya Y
and Ohno S: Human SMG-1, a novel phosphatidylinositol
3-kinase-related protein kinase, associates with components of the
mRNA surveillance complex and is involved in the regulation of
nonsense-mediated mRNA decay. Genes Dev. 15:2215–2228. 2001.
View Article : Google Scholar
|
31
|
Masse I, Molin L, Mouchiroud L, et al: A
novel role for the SMG-1 kinase in lifespan and oxidative stress
resistance in Caenorhabditis elegans. PLoS One. 3:e33542008.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Keith B and Simon MC: Hypoxia-inducible
factors, stem cells, and cancer. Cell. 129:465–472. 2007.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kaelin WG Jr and Ratcliffe PJ: Oxygen
sensing by metazoans: the central role of the HIF hydroxylase
pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen RQ, Yang QK, Chen YL, et al: Kinome
siRNA screen identifies SMG-1 as a negative regulator of
hypoxia-inducible factor-1alpha in hypoxia. J Biol Chem.
284:16752–16758. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang GL, Jiang BH, Rue EA and Semenza GL:
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci
USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mottet D, Michel G, Renard P, Ninane N,
Raes M and Michiels C: ERK and calcium in activation of HIF-1. Ann
NY Acad Sci. 973:448–453. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pang R and Poon RT: Angiogenesis and
antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett.
242:151–167. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kuboki S, Shimizu H, Mitsuhashi N, et al:
Angiopoietin-2 levels in the hepatic vein as a useful predictor of
tumor invasiveness and prognosis in human hepatocellular carcinoma.
J Gastroenterol Hepatol. 23:e157–e164. 2008. View Article : Google Scholar : PubMed/NCBI
|
39
|
Torimura T, Sata M, Ueno T, et al:
Increased expression of vascular endothelial growth factor is
associated with tumor progression in hepatocellular carcinoma. Hum
Pathol. 29:986–991. 1998. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nakamura K, Zen Y, Sato Y, et al: Vascular
endothelial growth factor, its receptor Flk-1, and hypoxia
inducible factor-1alpha are involved in malignant transformation in
dysplastic nodules of the liver. Hum Pathol. 38:1532–1546. 2007.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wu XZ, Xie GR and Chen D: Hypoxia and
hepatocellular carcinoma: The therapeutic target for hepatocellular
carcinoma. J Gastroenterol Hepatol. 22:1178–1182. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Nenasheva VV, Nikolaev AI, Martynenko AV,
et al: Differential gene expression in HIV/SIV-associated and
spontaneous lymphomas. Int J Med Sci. 2:122–128. 2005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Xia QS, Ishigaki Y, Zhao X, et al: Human
SMG-1 is involved in gemcitabine-induced primary microRNA-155/BIC
up-regulation in human pancreatic cancer PANC-1 cells. Pancreas.
40:55–60. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Vivanco I and Sawyers CL: The
phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev
Cancer. 2:489–501. 2002. View
Article : Google Scholar : PubMed/NCBI
|
45
|
Fang JY and Richardson BC: The MAPK
signalling pathways and colorectal cancer. Lancet Oncol. 6:322–327.
2005. View Article : Google Scholar : PubMed/NCBI
|