Open Access

Succinate promotes skeletal muscle protein synthesis via Erk1/2 signaling pathway

  • Authors:
    • Yexian Yuan
    • Yaqiong Xu
    • Jingren Xu
    • Bingqing Liang
    • Xingcai Cai
    • Canjun Zhu
    • Lina Wang
    • Songbo Wang
    • Xiaotong Zhu
    • Ping Gao
    • Xiuqi Wang
    • Yongliang Zhang
    • Qingyan Jiang
    • Gang Shu
  • View Affiliations

  • Published online on: September 20, 2017     https://doi.org/10.3892/mmr.2017.7554
  • Pages: 7361-7366
  • Copyright: © Yuan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

It is well known that endurance training is effective to attenuate skeletal muscle atrophy. Succinate is a typical TCA metabolite, of which exercise could dramatically increase the content. The present study aimed to investigate the effect of succinate on protein synthesis in skeletal muscle, and try to delineate the underlying mechanism. The in vitro study revealed that succinate dose‑dependently increased protein synthesis in C2C12 myotube along with the enhancement of phosphorylation levels of AKT Serine/Threonine Kinase 1(Akt), mammalian target of rapamycin, S6, eukaryotic translation initiation factor 4E, 4E binding protein 1 and forkhead box O (FoxO) 3a. Furthermore, it was demonstrated that 20 mM succinate markedly increased [Ca2+]i. Then, the phospho‑extracellular regulated kinase (Erk), ‑Akt level and the crosstalk between Erk and Akt were elevated in response to succinate. Notably, the Erk antagonist (U0126) or mTOR inhibitor (rapamycin) abolished the effect of succinate on protein synthesis. The in vivo study verified that succinate dose‑dependently increased the protein synthesis, in addition to phosphorylation levels of Erk, Akt and FoxO3a in gastrocnemius muscle. In summary, these findings demonstrated that succinate promoted skeletal muscle protein deposition via Erk/Akt signaling pathway.
View Figures
View References

Related Articles

Journal Cover

November-2017
Volume 16 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Yuan Y, Xu Y, Xu J, Liang B, Cai X, Zhu C, Wang L, Wang S, Zhu X, Gao P, Gao P, et al: Succinate promotes skeletal muscle protein synthesis via Erk1/2 signaling pathway. Mol Med Rep 16: 7361-7366, 2017
APA
Yuan, Y., Xu, Y., Xu, J., Liang, B., Cai, X., Zhu, C. ... Shu, G. (2017). Succinate promotes skeletal muscle protein synthesis via Erk1/2 signaling pathway. Molecular Medicine Reports, 16, 7361-7366. https://doi.org/10.3892/mmr.2017.7554
MLA
Yuan, Y., Xu, Y., Xu, J., Liang, B., Cai, X., Zhu, C., Wang, L., Wang, S., Zhu, X., Gao, P., Wang, X., Zhang, Y., Jiang, Q., Shu, G."Succinate promotes skeletal muscle protein synthesis via Erk1/2 signaling pathway". Molecular Medicine Reports 16.5 (2017): 7361-7366.
Chicago
Yuan, Y., Xu, Y., Xu, J., Liang, B., Cai, X., Zhu, C., Wang, L., Wang, S., Zhu, X., Gao, P., Wang, X., Zhang, Y., Jiang, Q., Shu, G."Succinate promotes skeletal muscle protein synthesis via Erk1/2 signaling pathway". Molecular Medicine Reports 16, no. 5 (2017): 7361-7366. https://doi.org/10.3892/mmr.2017.7554