Oxymatrine protects against the effects of cardiopulmonary resuscitation via modulation of the TGF-β1/Smad3 signaling pathway

  • Authors:
    • Dawei Wang
    • Xiao Qian Lou
    • Xiao‑Ming Jiang
    • Chenxi Yang
    • Xiao‑Liang Liu
    • Nan Zhang
  • View Affiliations

  • Published online on: January 4, 2018     https://doi.org/10.3892/mmr.2018.8373
  • Pages: 4747-4752
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Previous studies have demonstrated that oxymatrine may inhibit ventricular remodeling and serves an important role in the treatment of cardiovascular disease. The present study investigated whether oxymatrine treatment protects against the effects of cardiopulmonary resuscitation (CPR) via regulation of the transforming growth factor‑β1 (TGF‑β1)/mothers against decapentaplegic (Smad) signaling pathway. A CPR model was established in Sprague‑Dawley (SD) rats by asphyxiation, and rats were subsequently anaesthetized by intraperitoneal injection of chloral hydrate. SD rats were then administered 25 or 50 mg/kg oxymatrine once a day for 4 weeks. Oxymatrine treatment significantly improved troponin I levels, the ejection fraction, hydroxyproline content and the myocardial performance index in model rats. However, treatment with oxymatrine significantly reduced arterial oxygen tension, arterial lactate levels and oxygen extraction. Treatment with oxymatrine following CPR significantly inhibited the protein expression levels of TGF‑β1, TGF‑β1 receptor type 1 and Smad homolog 3 (Smad3) in model rats. The results of this research indicated that oxymatrine treatment may protect against the effects of CPR via regulation of the TGF‑β1/Smad3 signaling pathway and may be a novel drug for CPR in a clinical setting.
View Figures
View References

Related Articles

Journal Cover

March-2018
Volume 17 Issue 3

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Wang D, Lou XQ, Jiang XM, Yang C, Liu XL and Zhang N: Oxymatrine protects against the effects of cardiopulmonary resuscitation via modulation of the TGF-β1/Smad3 signaling pathway. Mol Med Rep 17: 4747-4752, 2018
APA
Wang, D., Lou, X.Q., Jiang, X., Yang, C., Liu, X., & Zhang, N. (2018). Oxymatrine protects against the effects of cardiopulmonary resuscitation via modulation of the TGF-β1/Smad3 signaling pathway. Molecular Medicine Reports, 17, 4747-4752. https://doi.org/10.3892/mmr.2018.8373
MLA
Wang, D., Lou, X. Q., Jiang, X., Yang, C., Liu, X., Zhang, N."Oxymatrine protects against the effects of cardiopulmonary resuscitation via modulation of the TGF-β1/Smad3 signaling pathway". Molecular Medicine Reports 17.3 (2018): 4747-4752.
Chicago
Wang, D., Lou, X. Q., Jiang, X., Yang, C., Liu, X., Zhang, N."Oxymatrine protects against the effects of cardiopulmonary resuscitation via modulation of the TGF-β1/Smad3 signaling pathway". Molecular Medicine Reports 17, no. 3 (2018): 4747-4752. https://doi.org/10.3892/mmr.2018.8373