1.
|
Aebi M: The adult scoliosis. Eur Spine J.
14:925–948. 2005. View Article : Google Scholar
|
2.
|
Ploumis A, Transfledt EE and Denis F:
Degenerative lumbar scoliosis associated with spinal stenosis.
Spine J. 7:428–436. 2007. View Article : Google Scholar
|
3.
|
Oskouian RJ Jr and Shaffrey CI:
Degenerative lumbar scoliosis. Neurosurg Clin N Am. 17:299–315.
2006. View Article : Google Scholar
|
4.
|
Ferrari S, Rizzoli R and Bonjour JP:
Heritable and nutritional influences on bone mineral mass. Aging
(Milano). 10:205–213. 1998.PubMed/NCBI
|
5.
|
Kawaguchi Y, Kanamori M, Ishihara H,
Ohmori K, Matsui H and Kimura T: The association of lumbar disc
disease with vitamin-D receptor gene polymorphism. J Bone Joint
Surg Am. 84-A:2022–2028. 2002.PubMed/NCBI
|
6.
|
Dresbach T, Qualmann B, Kessels MM, Garner
CC and Gundelfinger ED: The presynaptic cytomatrix of brain
synapses. Cell Mol Life Sci. 58:94–116. 2001. View Article : Google Scholar : PubMed/NCBI
|
7.
|
Lonart G: RIM1: an edge for presynaptic
plasticity. Trends Neurosci. 25:329–332. 2002. View Article : Google Scholar : PubMed/NCBI
|
8.
|
Schoch S, Mittelstaedt T, Kaeser PS, et
al: Redundant functions of RIM1α and RIM2α in
Ca2+-triggered neurotransmitter release. EMBO J.
25:5852–5863. 2006.
|
9.
|
Ohtsuka T, Takao-Rikitsu E, Inoue E, et
al: Cast: a novel protein of the cytomatrix at the active zone of
synapses that forms a ternary complex with RIM1 and munc13-1. J
Cell Biol. 158:577–590. 2002. View Article : Google Scholar : PubMed/NCBI
|
10.
|
Wang Y, Liu X, Biederer T and Südhof TC: A
family of RIM-binding proteins regulated by alternative splicing:
implications for the genesis of synaptic active zones. Proc Natl
Acad Sci USA. 99:14464–14469. 2002. View Article : Google Scholar : PubMed/NCBI
|
11.
|
Wang Y, Sugita S and Südhof TC: The
RIM/NIM family of neuronal C2domain proteins.
Interactions with Rab3 and a new class of Src homology 3 domain
proteins. J Biol Chem. 275:20033–20044. 2000.PubMed/NCBI
|
12.
|
Coppola T, Magnin-Luthi S, Perret-Menoud
V, et al: Direct interaction of the Rab3 effector RIM with
Ca2+channels, SNAP-25, and synaptotagmin. J Biol Chem.
276:32756–32762. 2001. View Article : Google Scholar : PubMed/NCBI
|
13.
|
Schoch S, Castillo PE, Jo T, et al:
RIM1alpha forms a protein scaffold for regulating neurotransmitter
release at the active zone. Nature. 415:321–326. 2002. View Article : Google Scholar : PubMed/NCBI
|
14.
|
Schoch S and Gundelfinger ED: Molecular
organization of the presynaptic active zone. Cell Tissue Res.
326:379–391. 2006. View Article : Google Scholar : PubMed/NCBI
|
15.
|
Wang Y and Südhof TC: Genomic definition
of RIM proteins: evolutionary amplification of a family of synaptic
regulatory proteins. Genomics. 81:126–137. 2003. View Article : Google Scholar : PubMed/NCBI
|
16.
|
Pritchett JW and Bortel DT: Degenerative
symptomatic lumbar scoliosis. Spine (Phila Pa 1976). 18:700–703.
1993. View Article : Google Scholar : PubMed/NCBI
|
17.
|
Chin KR, Furey C and Bohlman HH: Risk of
progression in de novo low-magnitude degenerative lumbar curves:
natural history and literature review. Am J Orthop (Belle Mead NJ).
38:404–409. 2009.PubMed/NCBI
|
18.
|
Solé X, Guinó E, Valls J, Iniesta R and
Moreno V: SNPStats: a web tool for the analysis of association
studies. Bioinformatics. 22:1928–1929. 2006.
|
19.
|
Gabriel SB, Schaffner SF, Nguyen H, et al:
The structure of haplotype blocks in the human genome. Science.
296:2225–2229. 2002. View Article : Google Scholar : PubMed/NCBI
|
20.
|
Barrett JC, Fry B, Maller J and Daly MJ:
Haploview: analysis and visualization of LD and haplotype maps.
Bioinformatics. 21:263–265. 2005. View Article : Google Scholar : PubMed/NCBI
|
21.
|
Betz A, Thakur P, Junge HJ, et al:
Functional interaction of the active zone proteins Munc13-1 and
RIM1 in synaptic vesicle priming. Neuron. 30:183–196. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22.
|
Wang X, Hu B, Zimmermann B and Kilimann
MW: Rim1 and rabphilin-3 bind Rab3-GTP by composite determinants
partially related through N-terminal alpha-helix motifs. J Biol
Chem. 276:32480–32488. 2001. View Article : Google Scholar : PubMed/NCBI
|
23.
|
Zhen M and Jin Y: The liprin protein SYD-2
regulates the differentiation of presynaptic termini in C.
elegans. Nature. 401:371–375. 1999. View Article : Google Scholar : PubMed/NCBI
|
24.
|
Kaufmann N, DeProto J, Ranjan R, et al:
Drosophila liprin-alpha and the receptor phosphatase Dlar
control synapse morphogenesis. Neuron. 34:27–38. 2002. View Article : Google Scholar
|
25.
|
Koushika SP, Richmond JE, Hadwiger G, et
al: A post-docking role for active zone protein Rim. Nat Neurosci.
4:997–1005. 2001. View
Article : Google Scholar : PubMed/NCBI
|
26.
|
Castillo PE, Schoch S, Schmitz F, et al:
RIM1alpha is required for presynaptic long-term potentiation.
Nature. 415:327–330. 2002. View
Article : Google Scholar : PubMed/NCBI
|
27.
|
Weidenhofer J, Bowden NA, Scott RJ and
Tooney PA: Altered gene expression in the amygdala in
schizophrenia: up-regulation of genes located in the cytomatrix
active zone. Mol Cell Neurosci. 31:243–250. 2006. View Article : Google Scholar : PubMed/NCBI
|
28.
|
Weidenhofer J, Scott RJ and Tooney PA:
Investigation of the expression of genes affecting cytomatrix
active zone function in the amygdala in schizophrenia: effects of
antipsychotic drugs. J Psychiatr Res. 43:282–290. 2009. View Article : Google Scholar : PubMed/NCBI
|
29.
|
Takao-Rikitsu E, Mochida S, Inoue E, et
al: Physical and functional interaction of the active zone
proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J
Cell Biol. 164:301–311. 2004. View Article : Google Scholar : PubMed/NCBI
|