1
|
McKenna DJ, Jones K and Hughes K:
Efficacy, safety, and use of Ginkgo biloba in clinical and
preclinical applications. Altern Ther Health Med. 7:70–86. 88–90.
2001.PubMed/NCBI
|
2
|
No authors listed. EGb 761: Ginkgo
biloba extract, Ginkor. Drugs R D. 4:188–193. 2003. View Article : Google Scholar
|
3
|
Brunetti L, Orlando G, Menghini L,
Ferrante C, Chiavaroli A and Vacca M: Ginkgo biloba leaf
extract reverses amyloid beta-peptide-induced isoprostane
production in rat brain in vitro. Planta Med. 72:1296–1299. 2006.
View Article : Google Scholar
|
4
|
Maclennan KM, Darlington CL and Smith PF:
The CNS effects of Ginkgo biloba extracts and ginkgolide B.
Prog Neurobiol. 67:235–257. 2002.
|
5
|
Yao ZX, Han Z, Drieu K and Papadopoulos V:
Ginkgo biloba extract (Egb 761) inhibits β-amyloid
production by lowering free cholesterol levels. J Nutr Biochem.
15:749–756. 2004. View Article : Google Scholar
|
6
|
Gong QH, Wu Q, Huang XN, Sun AS, Nie J and
Shi JS: Protective effect of Ginkgo biloba leaf extract on
learning and memory deficit induced by aluminum in model rats. Chin
J Integr Med. 12:37–41. 2006.
|
7
|
Hrehorovska M, Burda J, Domorakova I and
Mechirova E: Effect of Tanakan on postischemic activity of protein
synthesis machinery in the rat brain. Gen Physiol Biophys.
23:457–465. 2004.PubMed/NCBI
|
8
|
Koltermann A, Hartkorn A, Koch E, Furst R,
Vollmar AM and Zahler S: Ginkgo biloba extract EGb 761
increases endothelial nitric oxide production in vitro and in vivo.
Cell Mol Life Sci. 64:1715–1722. 2007. View Article : Google Scholar
|
9
|
Oh SM and Chung KH: Estrogenic activities
of Ginkgo biloba extracts. Life Sci. 74:1325–1335. 2004.
View Article : Google Scholar
|
10
|
Oh SM and Chung KH: Antiestrogenic
activities of Ginkgo biloba extracts. J Steroid Biochem Mol
Biol. 100:167–176. 2006. View Article : Google Scholar
|
11
|
Feng X, Zhang L and Zhu H: Comparative
anticancer and antioxidant activities of different ingredients of
Ginkgo biloba extract (EGb 761). Planta Med. 75:792–796.
2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen XH, Miao YX, Wang XJ, et al: Effects
of Ginkgo biloba extract EGb761 on human colon
adenocarcinoma cells. Cell Physiol Biochem. 27:227–232. 2011.
|
13
|
Chao JC and Chu CC: Effects of Ginkgo
biloba extract on cell proliferation and cytotoxicity in human
hepatocellular carcinoma cells. World J Gastroenterol. 10:37–41.
2004.
|
14
|
Zhang Y, Chen AY, Li M, Chen C and Yao Q:
Ginkgo biloba extract kaempferol inhibits cell proliferation
and induces apoptosis in pancreatic cancer cells. J Surg Res.
148:17–23. 2008. View Article : Google Scholar
|
15
|
Xu AH, Chen HS, Sun BC, et al: Therapeutic
mechanism of Ginkgo biloba exocarp polysaccharides on
gastric cancer. World J Gastroenterol. 9:2424–2427. 2003.
|
16
|
Bernhardt R: Cytochromes P450 as versatile
biocatalysts. J Biotechnol. 124:128–145. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mao P, Qiao DJ and Ma XR: Cytochrome P450
and iatrology. Chin J Antibiot. 36:93–101. 2011.
|
18
|
Orellana M and Guajardo V: Cytochrome P450
activity and its alteration in different diseases. Rev Med Chil.
132:85–94. 2004.(In Spanish).
|
19
|
Oyama T, Kagawa N, Kunugita N, et al:
Expression of cytochrome P450 in tumor tissues and its association
with cancer development. Front Biosci. 9:1967–1976. 2004.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Murray GI, Weaver RJ, Paterson PJ, Ewen
SW, Melvin WT and Burke MD: Expression of xenobiotic metabolizing
enzymes in breast cancer. J Pathol. 169:347–353. 1993. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mace K, Bowman ED, Vautravers P, Shields
PG, Harris CC and Pfeifer AM: Characterisation of
xenobiotic-metabolising enzyme expression in human bronchial mucosa
and peripheral lung tissues. Eur J Cancer. 34:914–920. 1998.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Murray GI, McFadyen MC, Mitchell RT,
Cheung YL, Kerr AC and Melvin WT: Cytochrome P450 CYP3A in human
renal cell cancer. Br J Cancer. 79:1836–1842. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Murray GI: The role of cytochrome P450 in
tumour development and progression and its potential in therapy. J
Pathol. 192:419–426. 2000. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hashizume T, Imaoka S, Mise M, et al:
Involvement of CYP2J2 and CYP4F12 in the metabolism of ebastine in
human intestinal microsomes. J Pharmacol Exp Ther. 300:298–304.
2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bruno RD and Njar VC: Targeting cytochrome
P450 enzymes: a new approach in anti-cancer drug development.
Bioorg Med Chem. 15:5047–5060. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Murray GI, Taylor MC, McFadyen MC, et al:
Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res.
57:3026–3031. 1997.PubMed/NCBI
|
27
|
Gibson P, Gill JH, Khan PA, et al:
Cytochrome P450 1B1 (CYP1B1) is overexpressed in human colon
adenocarcinomas relative to normal colon: implications for drug
development. Mol Cancer Ther. 2:527–534. 2003.PubMed/NCBI
|
28
|
Tokizane T, Shiina H, Igawa M, et al:
Cytochrome P450 1B1 is overexpressed and regulated by
hypomethylation in prostate cancer. Clin Cancer Res. 11:5793–5801.
2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Deng Y, Bi HC, Zhao LZ, et al: Induction
of cytochrome P450s by terpene trilactones and flavonoids of the
Ginkgo biloba extract EGb 761 in rats. Xenobiotica.
38:465–481. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
He N, Cai HB, Xie HG, Collins X, Edeki TI
and Strom SC: Induction of cyp3a in primary cultures of human
hepatocytes by ginkgolides A and B. Clin Exp Pharmacol Physiol.
34:632–635. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Li L, Stanton JD, Tolson AH, Luo Y and
Wang H: Bioactive terpenoids and flavonoids from Ginkgo
biloba extract induce the expression of hepatic
drug-metabolizing enzymes through pregnane X receptor, constitutive
androstane receptor, and aryl hydrocarbon receptor-mediated
pathways. Pharm Res. 26:872–882. 2009.PubMed/NCBI
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔCTmethod. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bhattacharyya KK, Brake PB, Eltom SE, Otto
SA and Jefcoate CR: Identification of a rat adrenal cytochrome P450
active in polycyclic hydrocarbon metabolism as rat CYP1B1.
Demonstration of a unique tissue-specific pattern of hormonal and
aryl hydrocarbon receptor-linked regulation. J Biol Chem.
270:11595–11602. 1995. View Article : Google Scholar
|
34
|
Shimada T, Oda Y, Gillam EM, Guengerich FP
and Inoue K: Metabolic activation of polycyclic aromatic
hydrocarbons and other procarcinogens by cytochromes P450 1A1 and
P450 1B1 allelic variants and other human cytochromes P450 in
Salmonella typhimurium NM 2009. Drug Metab Dispos.
29:1176–1182. 2001.PubMed/NCBI
|
35
|
Tsuchiya Y, Nakajima M, Kyo S, Kanaya T,
Inoue M and Yokoi T: Human CYP1B1 is regulated by estradiol via
estrogen receptor. Cancer Res. 64:3119–3125. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Spink DC, Katz BH, Hussain MM, Pentecost
BT, Cao Z and Spink BC: Estrogen regulates Ah responsiveness in
MCF-7 breast cancer cells. Carcinogenesis. 24:1941–1950. 2003.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Sasaki M, Tanaka Y, Kaneuchi M, Sakuragi N
and Dahiya R: CYP1B1 gene polymorphisms have higher risk for
endometrial cancer, and positive correlations with estrogen
receptor α and estrogen receptor β expressions. Cancer Res.
63:3913–3918. 2003.PubMed/NCBI
|
38
|
Brockdorff BL, Skouv J, Reiter BE and
Lykkesfeldt AE: Increased expression of cytochrome p450 1A1 and 1B1
genes in anti-estrogen-resistant human breast cancer cell lines.
Int J Cancer. 88:902–906. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Berge G, Mollerup S, Øvrebø S, et al: Role
of estrogen receptor in regulation of polycyclic aromatic
hydrocarbon metabolic activation in lung. Lung Cancer. 45:289–297.
2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Buters JT, Sakai S, Richter T, et al:
Cytochrome P450 CYP1B1 determines susceptibility to
7,12-dimethylbenz[a]anthracene-induced lymphomas. Proc Natl Acad
Sci USA. 96:1977–1982. 1999.
|
41
|
Dohr O, Vogel C and Abel J: Different
response of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-sensitive
genes in human breast cancer MCF-7 and MDA-MB 231 cells. Arch
Biochem Biophys. 321:405–412. 1995. View Article : Google Scholar : PubMed/NCBI
|
42
|
Yoshioka H, Hiromori Y, Aoki A, et al:
Possible aryl hydrocarbon receptor-independent pathway of
2,3,7,8-tetrachlorodibenzo-p-dioxin-induced antiproliferative
response in human breast cancer cells. Toxicol Lett. 211:257–265.
2012. View Article : Google Scholar
|
43
|
Larsen MC, Angus WG, Brake PB, Eltom SE,
Sukow KA and Jefcoate CR: Characterization of CYP1B1 and CYP1A1
expression in human mammary epithelial cells: role of the aryl
hydrocarbon receptor in polycyclic aromatic hydrocarbon metabolism.
Cancer Res. 58:2366–2374. 1998.
|
44
|
Angus WG, Larsen MC and Jefcoate CR:
Expression of CYP1A1 and CYP1B1 depends on cell-specific factors in
human breast cancer cell lines: role of estrogen receptor status.
Carcinogenesis. 20:947–955. 1999. View Article : Google Scholar : PubMed/NCBI
|