|
1
|
Galon J, Robertson MW, Galinha A, et al:
Affinity of the interaction between Fc gamma receptor type III (Fc
gammaRIII) and monomeric human IgG subclasses. Role of Fc gammaRIII
glycosylation. Eur J Immunol. 27:1928–1932. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Maenaka K, van der Merwe PA, Stuart DI,
Jones EY and Sondermann P: The human low affinity Fcgamma receptors
IIa, IIb, and III bind IgG with fast kinetics and distinct
thermodynamic properties. J Biol Chem. 276:44898–44904. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Reilly AF, Norris CF, Surrey S, Bruchak
FJ, Rappaport EF, Schwartz E and McKenzie SE: Genetic diversity in
human Fc receptor II for immunoglobulin G: Fc gamma receptor IIA
ligand-binding polymorphism. Clin Diagn Lab Immunol. 1:640–644.
1994.PubMed/NCBI
|
|
4
|
Koene HR, Kleijer M, Algra J, Roos D, von
dem Borne AE and de Haas M: Fc gammaRIIIa-158V/F polymorphism
influences the binding of IgG by natural killer cell Fc gammaRIIIa,
independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood.
90:1109–1114. 1997.PubMed/NCBI
|
|
5
|
Van Den Berg L, Myhr KM, Kluge B and
Vedeler CA: Fcgamma receptor polymorphisms in populations in
Ethiopia and Norway. Immunology. 104:87–91. 2001.PubMed/NCBI
|
|
6
|
Breunis WB, van Mirre E, Bruin M, et al:
Copy number variation of the activating FCGR2C gene predisposes to
idiopathic thrombocytopenic purpura. Blood. 111:1029–1038. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Iwasaki M, Shimada N, Kasuga Y, et al:
Fragment c gamma receptor gene polymorphisms and breast cancer risk
in case-control studies in Japanese, Japanese Brazilians, and
non-Japanese Brazilians. Breast Cancer Res Treat. 126:497–505.
2011. View Article : Google Scholar
|
|
8
|
Concetti F and Napolioni V: Insights into
the role of Fc gamma receptors (FcgammaRs) genetic variations in
monoclonal antibody-based anti-cancer therapy. Recent Pat
Anticancer Drug Discov. 5:197–204. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bournazos S, Woof JM, Hart SP and
Dransfield I: Functional and clinical consequences of Fc receptor
polymorphic and copy number variants. Clin Exp Immunol.
157:244–254. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Song YW, Han CW, Kang SW, et al: Abnormal
distribution of Fc gamma receptor type IIa polymorphisms in Korean
patients with systemic lupus erythematosus. Arthritis Rheum.
41:421–426. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Magnusson V, Johanneson B, Lima G, et al:
Both risk alleles for FcgammaRIIA and FcgammaRIIIA are
susceptibility factors for SLE: a unifying hypothesis. Genes Immun.
5:130–137. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cartron G, Dacheux L, Salles G, et al:
Therapeutic activity of humanized anti-CD20 monoclonal antibody and
polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood.
99:754–758. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Weng WK and Levy R: Two immunoglobulin G
fragment C receptor polymorphisms independently predict response to
rituximab in patients with follicular lymphoma. J Clin Oncol.
21:3940–3947. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hatjiharissi E, Xu L, Santos DD, et al:
Increased natural killer cell expression of CD16, augmented binding
and ADCC activity to rituximab among individuals expressing the
FcγRIIIa-158 V/V and V/F polymorphism. Blood. 110:2561–2564.
2007.PubMed/NCBI
|
|
15
|
Paiva M, Marques H, Martins A, Ferreira P,
Catarino R and Medeiros R: FcgammaRIIa polymorphism and clinical
response to rituximab in non-Hodgkin lymphoma patients. Cancer
Genet Cytogenet. 183:35–40. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Weng WK, Negrin RS, Lavori P and Horning
SJ: Immunoglobulin G Fc receptor FcgammaRIIIa 158 V/F polymorphism
correlates with rituximab-induced neutropenia after autologous
transplantation in patients with non-Hodgkin’s lymphoma. J Clin
Oncol. 28:279–284. 2010.PubMed/NCBI
|
|
17
|
Musolino A, Naldi N, Bortesi B, et al:
Immunoglobulin G fragment C receptor polymorphisms and clinical
efficacy of trastuzumab-based therapy in patients with
HER-2/neu-positive metastatic breast cancer. J Clin Oncol.
26:1789–1796. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tamura K, Shimizu C, Hojo T, et al: FcγR2A
and 3A polymorphisms predict clinical outcome of trastuzumab in
both neoadjuvant and metastatic settings in patients with
HER2-positive breast cancer. Ann Oncol. 22:1302–1307. 2011.
|
|
19
|
Zhang W, Gordon M, Schultheis AM, et al:
FCGR2A and FCGR3A polymorphisms associated with clinical outcome of
epidermal growth factor receptor expressing metastatic colorectal
cancer patients treated with single-agent cetuximab. J Clin Oncol.
25:3712–3718. 2007. View Article : Google Scholar
|
|
20
|
Bibeau F, Lopez-Crapez E, Di Fiore F, et
al: Impact of FcγRIIa-FcγRIIIa polymorphisms and KRAS mutations on
the clinical outcome of patients with metastatic colorectal cancer
treated with cetuximab plus irinotecan. J Clin Oncol. 27:1122–1129.
2009.
|
|
21
|
Pander J, Gelderblom H, Antonini NF, et
al: Correlation of FCGR3A and EGFR germline polymorphisms with the
efficacy of cetuximab in KRAS wild-type metastatic colorectal
cancer. Eur J Cancer. 46:1829–1834. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ionita-Laza I, Rogers AJ, Lange C, Raby BA
and Lee C: Genetic association analysis of copy-number variation
(CNV) in human disease pathogenesis. Genomics. 93:22–26. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wain LV, Armour JA and Tobin MD: Genomic
copy number variation, human health, and disease. Lancet.
374:340–350. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fanciulli M, Petretto E and Aitman TJ:
Gene copy number variation and common human disease. Clin Genet.
77:201–213. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hollox EJ, Detering JC and Dehnugara T: An
integrated approach for measuring copy number variation at the
FCGR3 (CD16) locus. Hum Mutat. 30:477–484. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Breunis WB, van Mirre E, Geissler J, et
al: Copy number variation at the FCGR locus includes FCGR3A, FCGR2C
and FCGR3B but not FCGR2A and FCGR2B. Hum Mutat. 30:E640–E650.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhou XJ, Lv JC, Bu DF, et al: Copy number
variation of FCGR3A rather than FCGR3B and FCGR2B is associated
with susceptibility to anti-GBM disease. Int Immunol. 22:45–51.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Niederer HA, Willcocks LC, Rayner TF, et
al: Copy number, linkage disequilibrium and disease association in
the FCGR locus. Hum Mol Genet. 19:3282–3294. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fanciulli M, Vyse TJ and Aitman TJ: Copy
number variation of Fc gamma receptor genes and disease
predisposition. Cytogenet Genome Res. 123:161–168. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Schaschl H, Aitman TJ and Vyse TJ: Copy
number variation in the human genome and its implication in
autoimmunity. Clin Exp Immunol. 156:12–16. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu K and Muse SV: PowerMarker: an
integrated analysis environment for genetic marker analysis.
Bioinformatics. 21:2128–2129. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Rodriguez S, Gaunt TR and Day IN:
Hardy-Weinberg equilibrium testing of biological ascertainment for
Mendelian randomization studies. Am J Epidemiol. 169:505–514. 2009.
View Article : Google Scholar : PubMed/NCBI
|