1
|
Vandesompele J, De Preter K, Pattyn F,
Poppe B, Van Roy N, De Paepe A and Speleman F: Accurate
normalization of real-time quantitative RT-PCR data by genometric
averaging of multiple internal control genes. Genome Biol.
3:RESEARCH0034. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bas A, Forsberg G, Hammarström S and
Hammarström ML: Utility of the housekeeping genes 18S rRNA, β-actin
and glyceraldehyde-3-phosphate-dehydrogenase for normalization in
real-time quantitative reverse transcriptase-polymerase chain
reaction analysis of gene expression in human T lymphocytes. Scand
J Immunol. 59:566–573. 2004.
|
3
|
Radonić A, Thulke S, Mackay IM, Landt O,
Siegert W and Nitsche A: Guideline to reference gene selection for
quantitative real-time PCR. Biochem Biophys Res Commun.
313:856–862. 2004.PubMed/NCBI
|
4
|
Barber RD, Harmer DW, Coleman RA and Clark
BJ: GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression
in a panel of 72 human tissues. Physiol Genomics. 21:389–395. 2005.
View Article : Google Scholar : PubMed/NCBI
|
5
|
van der Woude CJ, Moshage H, Homan M,
Klebeuker JH, Jansen PLM and van Dekken H: Expression of apotosis
related proteins during malignant progression in chronic ulcerative
colitis. J Clin Pathol. 58:811–814. 2005.PubMed/NCBI
|
6
|
Ernst PB, Takaishi H and Crowe SE:
Helicobacter pylori infection as a model for
gastrointestinal immunity and chronic inflammatory disease. Dig
Dis. 19:104–111. 2001. View Article : Google Scholar
|
7
|
Itzkowitz SH and Yio X: Inflammation and
cancer IV. Colorectal cancer in inflammatory bowel disease: the
role of inflammation. Am J Physiol Gastrointest Liver Physiol.
287:G7–G17. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rutter M, Saunders B, Wilkinson K, Rumbles
S, Schofield G, Kamm M, Williams C, Price A, Talbot I and Forbes A:
Severity of inflammation is a risk factor for colorectal neoplasma
in ulcerative colitis. Gastroenterology. 126:451–459. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Cario E and Podolsky DK: Differential
alternation in intestinal epithelial cell expression of Toll-like
receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect
Immun. 68:7010–7017. 2000. View Article : Google Scholar : PubMed/NCBI
|
10
|
Schmid H, Cohen CD, Henger A, Irrgang S,
Schlondorff D and Kretzler M: Validation of endogenous controls for
expression analysis in microdissected human renal biopsies. Kidney
Int. 64:356–360. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
de Kok JB, Roelofs RW, Giesendorf BA,
Pennings JL, Waas ET, Feuth T and Swinkels DW: Normalization of
gene expression measurements in tumor tissues: comparison of 13
endogenous control genes. Lab Invest. 85:154–159. 2005.PubMed/NCBI
|
12
|
Ohl F, Jung M, Xu C, Stephan C, Rabien A,
Burkhardt M, Nitsche A, Kristiansen G, Loening SA, Radonić A and
Jung K: Gene expression studies in prostate cancer tissue: which
reference gene should be selected for normalization? J Mol Med
(Berl). 83:1014–1024. 2005. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bianchini M, Levy E, Zucchini C, Pinski V,
Macagno C, De Sanctis P, Valvassori L, Carinci P and Mordoh J:
Comparative study of gene expression by cDNA microarray in human
colorectal cancer tissues and normal mucosa. Int J Oncol. 29:83–94.
2006.PubMed/NCBI
|
14
|
Takeuchi O, Hoshino K, Kawai T, Sanjo H,
Takada H, Ogawa T, Takeda K and Akira S: Differential roles of TLR2
and TLR4 in recognition of Gram-negative and Gram-positive
bacterial cell wall components. Immunity. 11:443–451. 1999.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Nihon-Yanagi Y, Terai K, Murano T,
Matsumoto T and Okazumi S: Tissue expression of Toll-like receptors
2 and 4 in sporadic human colorectal cancer. Cancer Immunol
Immunother. 61:71–77. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ortega-Cava CF, Ishihara S, Rumi MAK,
Kawashima K, Ishimura N, Kazumori H, Udagawa J, Kadowaki Y and
Kinoshita Y: Strategic compartmentalization of Toll-like receptor 4
in the mouse gut. J Immunol. 170:3977–3985. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Aderem A and Ulevitch RJ: Toll-like
receptors in the induction of the innate immune response. Nature.
406:782–787. 2000. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Janeway CA Jr and Medzhitov R: Innate
immune recognition. Annu Rev Immunol. 20:197–216. 2002. View Article : Google Scholar
|
19
|
Akira S and Hemmi H: Recognition of
pathogen-associated molecular patterns by TLR family. Immunol Lett.
85:85–95. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Miyake K: Innate immune sensing of
pathogens and danger signals by cell surface Toll-like receptors.
Semin Immunol. 19:3–10. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shrout J, Yousefzadeh M, Dodd A, Kirven K,
Blum C, Graham A, Benjamin K, Hoda R, Krishana Romano M, Wallace M,
Garrett-Mayer E and Mitas M: β-2 microglobulin mRNA expression
levels are prognostic for lymph node metastasis in colorectal
cancer patients. Br J Cancer. 98:1999–2005. 2008.
|
22
|
Bustin SA: Quantification of mRNA using
real-time reverse transcription PCR (RT-PCR): trends and problems.
J Mol Endocrinol. 29:23–39. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Dheda K, Huggett JF, Bustin SA, Johnson
MA, Rook G and Zumla A: Validation of housekeeping genes for
normalizing RNA expression in real-time PCR. Biotechniques.
37:112–119. 2004.PubMed/NCBI
|