1
|
Comerford I, Nibbs RJ, Litchfield W,
Bunting M, Harata Lee Y, Haylock Jacobs S, Forrow S, Korner H and
McColl SR: The atypical chemokine receptor CCX-CKR scavenges
homeostatic chemokines in circulation and tissues and suppresses
Th17 responses. Blood. 116:4130–4140. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Comerford I, Litchfield W, Harata-Lee Y,
Nibbs RJ and McColl SR: Regulation of hemotactic networks by
‘atypical’ receptors. Bioessays. 29:237–247. 2007.
|
3
|
Savarin-Vuaillat C and Ransohoff RM:
Chemokines and chemokine receptors in neurological disease: raise,
retain, or reduce? Neurotherapeutics. 4:590–601. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Galzi JL, Hachet-Haas M, Bonnet D, Daubeuf
F, Lecat S, Hibert M, Haiech J and Frossard N: Neutralizing
endogenous chemokines with small molecules: principles and
potential therapeutic applications. Pharmacol Ther. 126:39–55.
2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fernandez EJ and Lolis E: Structure,
function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol.
42:469–499. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hansell CA, Hurson CE and Nibbs RJ: DARC
and D6: silent partners in chemokine regulation? Immunol Cell Biol.
89:197–206. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Thelen M: Dancing to the tune of
chemokines. Nat Immunol. 2:129–134. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Graham GJ: D6 and the atypical chemokine
receptor family: novel regulators of immune and inflammatory
processes. Eur J Immunol. 39:342–351. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mantovani A, Bonecchi R and Locati M:
Tuning inflammation and immunity by chemokine sequestration: decoys
and more. Nat Rev Immunol. 6:907–918. 2006. View Article : Google Scholar : PubMed/NCBI
|
10
|
Müller A, Homey B, Soto H, Ge N, Catron D,
Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, Barrera JL,
Mohar A, Verástegui E and Zlotnik A: Involvement of chemokine
receptors in breast cancer metastasis. Nature. 410:50–56.
2001.PubMed/NCBI
|
11
|
Rollins BJ: Inflammatory chemokines in
cancer growth and progression. Eur J Cancer. 42:760–767. 2006.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ben-Baruch A: Organ selectivity in
metastasis: regulation by chemokines and their receptors. Clin Exp
Metastasis. 25:345–356. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ali S and Lazennec G: Chemokines: novel
targets for breast cancer metastasis. Cancer Metastasis Rev.
26:401–420. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Balkwill F: Cancer and the chemokine
network. Nat Rev Cancer. 4:540–550. 2004. View Article : Google Scholar
|
15
|
Bottazzi B, Polentarutti N, Acero R,
Balsari A, Boraschi D, Ghezzi P, Salmona M and Mantovani A:
Regulation of the macrophage content of neoplasms by
chemoattractants. Science. 220:210–212. 1983. View Article : Google Scholar : PubMed/NCBI
|
16
|
de Visser KE, Eichten A and Coussens LM:
Paradoxical roles of the immune system during cancer development.
Nat Rev Cancer. 6:24–37. 2006.
|
17
|
Balkwill F, Charles KA and Mantovani A:
Smoldering and polarized inflammation in the initiation and
promotion of malignant disease. Cancer Cell. 7:211–217. 2005.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Strieter RM, Belperio JA, Burdick MD,
Sharma S, Dubinett SM and Keane MP: CXC chemokine: angiogenesis,
immunoangiostasis, and metastases in lung cancer. Ann N Y Acad Sci.
1028:351–360. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Vandercappellen J, Van Damme J and Struyf
S: The role of CXC chemokines and their receptors in cancer. Cancer
Lett. 267:226–244. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Allavena P, Sica A, Solinas G, Porta C and
Mantovani A: The inflammatory micro-environment in tumor
progression: the role of tumor-associated macrophages. Crit Rev
Oncol Hematol. 66:1–9. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Allavena P, Marchesi F and Mantovani A:
The role of chemokines and their receptors in tumor progression and
invasion: potential new targets of biological therapy. Curr Cancer
Ther Rev. 1:81–92. 2005. View Article : Google Scholar
|
22
|
Mantovani A, Sozzani S, Locati M, Allavena
P and Sica A: Macrophage polarization: tumor-associated macrophages
as a paradigm for polarized M2 mononuclear phagocytes. Trends
Immunol. 23:549–555. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bingle L, Brown NJ and Lewis CE: The role
of tumour associated macrophages in tumour progression:
implications for new anticancer therapies. J Pathol. 196:254–265.
2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mehrad B, Keane MP and Strieter RM:
Chemokines as mediators of angiogenesis. Thromb Haemost.
97:755–762. 2007.PubMed/NCBI
|
25
|
Strieter RM, Polverini PJ, Kunkel SL, et
al: The functional role of the ‘ELR’ motif in CXC
chemokine-mediated angiogenesis. J Biol Chem. 270:27348–27357.
1995.
|
26
|
Strieter RM, Burdick MD, Mestas J,
Gomperts B, Keane MP and Belperio JA: Cancer CXC chemokine networks
and tumour angiogenesis. Eur J Cancer. 42:768–778. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mantovani A, Savino B, Locati M, Zammataro
L, Allavena P and Bonecchi R: The chemokine system in cancer
biology and therapy. Cytokine Growth Factor Rev. 21:27–39. 2010.
View Article : Google Scholar
|
28
|
Wu FY, Ou ZL, Feng LY, Luo JM, Wang LP,
Shen ZZ and Shao ZM: Chemokine decoy receptor D6 plays a negative
role in human breast cancer. Mol Cancer Res. 6:1276–1288. 2008.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang JM, Deng X, Gong W and Su S:
Chemokines and their role in tumor growth and metastasis. J Immunol
Methods. 220:1–17. 1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang J, Ou ZL, Hou YF, Luo JM, Shen ZZ,
Ding J and Shao ZM: Enhanced expression of Duffy antigen receptor
for chemokines by breast cancer cells attenuates growth and
metastasis potential. Oncogene. 25:7201–7211. 2006. View Article : Google Scholar : PubMed/NCBI
|
31
|
Graham GJ and McKimmie CS: Chemokine
scavenging by D6: a movable feast? Trends Immunol. 27:381–386.
2006. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nibbs RJ, Kriehuber E, Ponath PD, Parent
D, Qin S, Campbell JD, Henderson A, Kerjaschki D, Maurer D, Graham
GJ and Rot A: The beta-chemokine receptor D6 is expressed by
lymphatic endothelium and a subset of vascular tumors. Am J Pathol.
158:867–877. 2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Martinez de la Torre Y, Buracchi C,
Borroni EM, Dupor J, Bonecchi R, Nebuloni M, Pasqualini F, Doni A,
Lauri E, Agostinis C, Bulla R, Cook DN, Haribabu B, Meroni P,
Rukavina D, Vago L, Tedesco F, Vecchi A, Lira SA, Locati M and
Mantovani A: Protection against inflammation-and
autoantibody-caused fetal loss by the chemokine decoy receptor D6.
Proc Natl Acad Sci USA. 104:2319–2324. 2007.PubMed/NCBI
|
34
|
Zeng XH, Ou ZL, Yu KD, Feng LY, Yin WJ, Li
J, Shen ZZ and Shao ZM: Coexpression of atypical chemokine binders
(ACBs) in breast cancer predicts better outcomes. Breast Cancer Res
Treat. 125:715–727. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Nibbs RJ, Gilchrist DS, King V, Ferra A,
Forrow S, Hunter KD and Graham GJ: The atypical chemokine receptor
D6 suppresses the development of chemically induced skin tumors. J
Clin Invest. 117:1884–1892. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Vetrano S, Borroni EM, Sarukhan A, Savino
B, Bonecchi R, Correale C, Arena V, Fantini M, Roncalli M, Malesci
A, Mantovani A, Locati M and Danese S: The lymphatic system
controls intestinal inflammation and inflammation associated colon
cancer through the chemokine decoy receptor D6. Gut. 59:197–206.
2010. View Article : Google Scholar
|
37
|
Weber M, Blair E, Simpson CV, O’Hara M,
Blackburn PE, Rot A, Graham GJ and Nibbs RJ: The chemokine receptor
D6 constitutively traffics to and from the cell surface to
internalize and degrade chemokines. Mol Biol Cell. 15:2492–2508.
2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bonecchi R, Locati M, Galliera E, Vulcano
M, Sironi M, Fra AM, Gobbi M, Vecchi A, Sozzani S, Haribabu B, Van
Damme J and Mantovani A: Differential recognition and scavenging of
native and truncated macrophage-derived chemokine (macrophage
derived chemokine/CC chemokine ligand 22) by the D6 decoy receptor.
J Immunol. 172:4972–4976. 2004. View Article : Google Scholar
|
39
|
Hansell CAH, Simpson CV and Nibbs RJ:
Chemokine sequestration by atypical chemokine receptors. Biochem
Soc Trans. 34:1009–1013. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Addison CL, Belperio JA, Burdick MD and
Strieter RM: Overexpression of the duffy antigen receptor for
chemokines (DARC) by NSCLC tumor cells results in increased tumor
necrosis. BMC Cancer. 4:282004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Peiper SC, Wang Z, Neote K, Martin AW,
Showell HJ, Conklyn MJ, Ogborne K, Hadley TJ, Lu ZH, Hesselgesser J
and Horuk R: The Duffy antigen/receptor for chemokines (DARC) is
expressed in endothelial cells of Duffy negative individuals who
lack the erythrocyte receptor. J Exp Med. 181:1311–1317. 1995.
View Article : Google Scholar
|
42
|
Lee JS, Frevert CW, Wurfel MM, Peiper SC,
Wong VA, Ballman KK, Ruzinski JT, Rhim JS, Martin TR and Goodman
RB: Duffy antigen facilitates movement of chemokine across the
endothelium in vitro and promotes neutrophil trans¬migration in
vitro and in vivo. J Immunol. 170:5244–5251. 2003.PubMed/NCBI
|
43
|
Darbonne WC, Rice GC, Mohler MA, Apple T,
Hebert CA, Valente AJ and Baker JB: Red blood cells are a sink for
inter-leukin 8, a leukocyte chemotaxin. J Clin Invest.
88:1362–1369. 1991. View Article : Google Scholar : PubMed/NCBI
|
44
|
Neote K, Darbonne W, Ogez J, Horuk R and
Schall TJ: Identification of a promiscuous inflammatory peptide
receptor on the surface of red blood cells. J Biol Chem.
268:12247–12249. 1993.PubMed/NCBI
|
45
|
Neote K, Mak JY, Kolakowski LF and Schall
TJ: Functional and biochemical analysis of the cloned Duffy
antigen: identity with the red blood cell chemokine receptor.
Blood. 84:44–52. 1994.PubMed/NCBI
|
46
|
Shen H, Schuster R, Stringer KF, Waltz S
and Lentsch A: The Duffy antigen/receptor for chemokines (DARC)
regulates prostate tumor growth. Faseb J. 20:59–64. 2006.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Lentsch AB: The Duffy antigen/receptor for
chemokines (DARC) and prostate cancer. A role as clear as black and
white? FASEB J. 16:1093–1095. 2002. View Article : Google Scholar : PubMed/NCBI
|
48
|
Saji H, Koike M, Yamori T, Saji S, Seiki
M, Matsushima K and Toi M: Significant correlation of monocyte
chemoattractant protein 1 expression with neovascularization and
progression of breast carcinoma. Cancer. 92:1085–1091. 2001.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Townson JR and Nibbs RJ: Characterization
of mouse CCX-CKR, a receptor for the lymphocyte-attracting
chemokines TECK/ mCCL25, SLC/mCCL21 and MIP-3beta/mCCL19:
comparison to human CCX-CKR. Eur J Immunol. 32:1230–1241. 2002.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Muller G, Hopken UE and Lipp M: The impact
of CCR7 and CXCR5 on lymphoid organ development and systemic
immunity. Immunol Rev. 195:117–135. 2003. View Article : Google Scholar : PubMed/NCBI
|
51
|
Misslitz A, Pabst O, Hintzen G, Ohl L,
Kremmer E, Petrie HT and Förster R: Thymic T cell development and
progenitor local¬ization depend on CCR7. J Exp Med. 200:481–491.
2004.
|
52
|
Uehara S, Grinberg A, Farber JM and Love
PE: A role for CCR9 in T lymphocyte development and migration. J
Immunol. 168:2811–2819. 2002. View Article : Google Scholar : PubMed/NCBI
|
53
|
Ueno T, Saito F, Gray DH, Kuse S, Hieshima
K, Nakano H, Kakiuchi T, Lipp M, Boyd RL and Takahama Y: CCR7
signals are essential for cortex–medulla migration of developing
thymocytes. J Exp Med. 200:493–505. 2004.
|
54
|
Heinzel K, Benz C and Bleul CC: A silent
chemokine receptor regulates steady-state leukocyte homing in vivo.
Proc Natl Acad Sci USA. 104:8421–8426. 2007. View Article : Google Scholar : PubMed/NCBI
|
55
|
Feng LY, Ou ZL, Wu FY, Shen ZZ and Shao
ZM: Involvement of a novel chemokine decoy receptor CCX-CKR in
breast cancer growth, metastasis and patient survival. Clin Cancer
Res. 15:2962–2970. 2009. View Article : Google Scholar : PubMed/NCBI
|
56
|
Fredriksson R, Lagerstrom MC, Lundin LG
and Schioth HB: The G-protein coupled receptors in the human genome
form five main families. Phylogenetic analysis, paralogon groups,
and fingerprints. Mol Pharmacol. 63:1256–1272. 2003. View Article : Google Scholar
|
57
|
Levoye A, Balabanian K, Baleux F,
Bachelerie F and Lagane B: CXCR7 heterodimerizes with CXCR4 and
regulates CXCL12 mediated G protein signalling. Blood.
113:6085–6093. 2009. View Article : Google Scholar : PubMed/NCBI
|
58
|
Balabanian K, Lagane B, Infantino S, Chow
KYC, Harriague J, Moepps B, Arenzana-Seisdedos F, Thelen M and
Bachelerie F: The chemokine SDF-1/CXCL12 binds to and signals
through the orphan receptor RDC1 in T lymphocytes. J Biol Chem.
280:35760–35766. 2005. View Article : Google Scholar : PubMed/NCBI
|
59
|
Burns JM, Summers BC, Wang Y, Melikian A,
Berahovich R, Miao Z, Penfold ME, Sunshine MJ, Littman DR, Kuo CJ,
Wei K, McMaster BE, Wright K, Howard MC and Schall TJ: A novel
chemokine receptor for SDF-1 and I-TAC involved in cell survival,
cell adhesion, and tumor development. J Exp Med. 203:2201–2213.
2006. View Article : Google Scholar : PubMed/NCBI
|
60
|
Thelen M and Thelen S: CXCR7, CXCR4 and
CXCL12: an eccentric trio? J Neuroimmunol. 198:9–13. 2008.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Wang J, Shiozawa Y, Wang J, Wang Y, Jung
Y, et al: The role of CXCR7/RDC1 as a chemokine receptor for
CXCL12/SDF-1 in prostate cancer. J Biol Chem. 283:4283–4294. 2008.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Valentin G, Haas P and Gilmour D: The
chemokine SDF1a coordinates tissue migration through the spatially
restricted activation of Cxcr7 and Cxcr4b. Curr Biol. 17:1026–1031.
2007. View Article : Google Scholar : PubMed/NCBI
|
63
|
Boldajipour B, Mahabaleshwar H, Kardash E,
Reichman-Fried M, Blaser H, Minina S, Wilson D, Xu Q and Raz E:
Control of chemokine-guided cell migration by ligand sequestration.
Cell. 132:463–473. 2008. View Article : Google Scholar : PubMed/NCBI
|
64
|
Salunkhe S, Soorapaneni S, Prasad KS,
Raiker VA and Padmanabhan S: Strategies to maximize expression of
rightly processed human interferon alpha2b in Pichia
pastoris. Protein Expr Purif. 71:139–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
65
|
Gurkan C and Ellar DJ: Recombinant
production of bacterial toxins and their derivatives in the
methylotrophic yeast Pichia pastoris. Microb Cell Fact.
4:332005. View Article : Google Scholar : PubMed/NCBI
|
66
|
Cregg J, Cereghino J, Shi J and Higgins D:
Recombinant protein expression in Pichia pastoris. Mol
Biotechnol. 16:23–52. 2000. View Article : Google Scholar
|
67
|
Cereghino GPL, Cereghino JL, Ilgen C and
Cregg JM: Production of recombinant proteins in fermenter cultures
of the yeast Pichia pastoris. Curr Opin Biotechnol.
13:329–332. 2002. View Article : Google Scholar : PubMed/NCBI
|
68
|
Romanos M: Advances in the use of
Pichia pastoris for high level gene expression. Curr Opin
Biotechnol. 6:527–533. 1995.
|
69
|
Verma R, Boleti E and George AJT: Antibody
engineering: comparison of bacterial, yeast, insect and mammalian
expression systems. J Immunol Methods. 216:165–181. 1998.
View Article : Google Scholar : PubMed/NCBI
|
70
|
Cregg JM, Vedvick TS and Raschke WC:
Recent advances in the expression of foreign genes in Pichia
pastoris. Biotechnology (NY). 11:905–910. 1993. View Article : Google Scholar : PubMed/NCBI
|
71
|
Wysocka-Kapcinska M, Campos-Sandoval JA,
Pal A and Findlay JBC: Expression and characterization of
recombinant human retinol-binding protein in Pichia
pastoris. Protein Expr Purif. 71:28–32. 2010. View Article : Google Scholar : PubMed/NCBI
|
72
|
Bretthauer RK and Castellino FJ:
Glycosylation of Pichia pastoris-derived proteins.
Biotechnol Appl Biochem. 30:193–200. 1999.
|
73
|
Batra G, Gurramkonda C, Nemani SK, Jain
SK, Swaminathan S and Khanna N: Optimization of conditions for
secretion of dengue virus type 2 envelope domain III using
Pichia pastoris. J Biosci Bioeng. 110:408–414. 2010.
View Article : Google Scholar : PubMed/NCBI
|