1
|
Ungethum M: Osteogenesis and bone growth.
Modification by electrical and electromagnetic effects. MMW Munch
Med Wochenschr. 124:621–622. 1982.(In German).
|
2
|
de Barros Filho TE, Rossi JD, Lage Lde A,
Rodrigues CJ, de Oliveira AS, Pinto FC, dos Reis GM and Rodrigues
Júnior AJ: Effect of electromagnetic fields on osteogenesis: an
experimental study on rats. Rev Hosp Clin Fac Med Sao Paulo.
47:128–130. 1992.(In Portuguese).
|
3
|
Bekhite MM, Finkensieper A, Abou-Zaid FA,
El-Shourbagy IK, Omar KM, Figulla HR, Sauer H and Wartenberg M:
Static electromagnetic fields induce vasculogenesis and
chondro-osteogenesis of mouse embryonic stem cells by reactive
oxygen species-mediated up-regulation of vascular endothelial
growth factor. Stem Cells Dev. 19:731–743. 2010. View Article : Google Scholar
|
4
|
Pietak AM, Reid JW, Stott MJ and Sayer M:
Silicon substitution in the calcium phosphate bioceramics.
Biomaterials. 28:4023–4032. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wang L, Fan H, Zhang ZY, Lou AJ, Pei GX,
Jiang S, Mu TW, Qin JJ, Chen SY and Jin D: Osteogenesis and
angiogenesis of tissue-engineered bone constructed by
prevascularized β-tricalcium phosphate scaffold and mesenchymal
stem cells. Biomaterials. 31:9452–9461. 2010.PubMed/NCBI
|
6
|
Gurkan UA, Kishore V, Condon KW, Bellido
TM and Akkus O: A scaffold-free multicellular three-dimensional in
vitro model of osteogenesis. Calcif Tissue Int. 88:388–401. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhao J, Han W, Chen H, Tu M, Huan S, Miao
G, Zeng R, Wu H, Cha Z and Zhou C: Fabrication and in vivo
osteogenesis of biomimetic poly(propylene carbonate) scaffold with
nanofibrous chitosan network in macropores for bone tissue
engineering. J Mater Sci Mater Med. 23:517–525. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hu F, Chen S and Wang C, Yuan R, Xiang Y
and Wang C: Multi-wall carbon nanotube-polyaniline biosensor based
on lectin-carbohydrate affinity for ultrasensitive detection of Con
A. Biosens Bioelectron. 34:202–207. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Plonska-Brzezinska ME, Mazurczyk J, Palys
B, Breczko J, Lapinski A, Dubis AT and Echegoyen L: Preparation and
characterization of composites that contain small carbon
nano-onions and conducting polyaniline. Chemistry. 18:2600–2608.
2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yang Y and Luan J: Synthesis, property
characterization and photocatalytic activity of the novel composite
polymer poly-aniline/Bi2SnTiO7. Molecules.
17:2752–2772. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wong JY, Langer R and Ingber DE:
Electrically conducting polymers can noninvasively control the
shape and growth of mammalian cells. Proc Natl Acad Sci USA.
91:3201–3204. 1994. View Article : Google Scholar : PubMed/NCBI
|
12
|
Huang L, Hu J, Lang L, Wang X, Zhang P,
Jing X, Wang X, Chen X, Lelkes PI, Macdiarmid AG and Wei Y:
Synthesis and characterization of electroactive and biodegradable
ABA block copolymer of polylactide and aniline pentamer.
Biomaterials. 28:1741–1751. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang J, Li Q, Wang Y, Wang Y, Dong L, Xie
H and Xiong C: Self-suspended polyaniline doped with a protonic
acid containing a polyethylene glycol segment. Chem Asian J.
6:2920–2924. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Feng W and Jia S: Rapamycin inhibits the
invasive ability of thyroid cancer cells by down-regulating the
expression of VEGF-C in vitro. Cell Biochem Funct. 30:487–491.
2012. View
Article : Google Scholar : PubMed/NCBI
|
15
|
Galassi F, Kaman WE, Anssari Moin D, van
der Horst J, Wismeijer D, Crielaard W, Laine ML, Veerman EC, Bikker
FJ and Loos BG: Comparing culture, real-time PCR and fluorescence
resonance energy transfer technology for detection of
Porphyromonas gingivalis in patients with or without
peri-implant infections. J Periodontal Res. 47:616–625. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Blank M and Goodman R: Do electromagnetic
fields interact directly with DNA? Bioelectromagnetics. 18:111–115.
1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang L, Zhuang X, Hu J, Lang L, Zhang P,
Wang Y, Chen X, Wei Y and Jing X: Synthesis of biodegradable and
electroactive multiblock polylactide and aniline pentamer copolymer
for tissue engineering applications. Biomacromolecules. 9:850–858.
2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li CM, Chiang H, Fu YD, Lu DQ and Shao J:
Exposure to 50-Hz electromagnetic fields: effects of time and field
strength on GAP junctional intercellular communications.
Electromagn Biol Med. 18:249–256. 1999. View Article : Google Scholar
|
19
|
Kim SS, Park MS, Jeon O, Choi CY and Kim
BS: Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds
for bone tissue engineering. Biomaterials. 27:1399–1409. 2006.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Termine JD, Kleinman HK, Whitson SW, Conn
KM, McGarvey ML and Martin GR: Osteonectin, a bone-specific protein
linking mineral to collagen. Cell. 26:99–105. 1981. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ribeiro N, Sousa SR and Monteiro FJ:
Influence of crystallite size of nanophased hydroxyapatite on
fibronectin and osteonectin adsorption and on MC3T3-E1 osteoblast
adhesion and morphology. J Colloid Interface Sci. 351:398–406.
2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lopez JM, Balemans W, Piters E, van Hul W
and González G: Genetic analysis and effect of triiodothyronine and
prednisone trial on bone turnover in a patient with craniotubular
hyperostosis. Bone. 43:405–409. 2008. View Article : Google Scholar : PubMed/NCBI
|