1
|
Grześk G, Koziński M, Navarese EP,
Krzyżanowski M, Grześk E, Kubica A, Siller-Matula JM, Castriota F
and Kubica J: Ticagrelor, but not clopidogrel and prasugrel,
prevents ADP-induced vascular smooth muscle cell contraction: a
placebo-controlled study in rats. Thrombos Res. 130:65–69.
2012.PubMed/NCBI
|
2
|
Rajakariar R, Yaqoob MM and Gilroy WD:
COX-2 in inflammation and resolution. Mol Interv. 6:199–207. 2006.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Smyth EM and FitzGerald GA: Prostaglandin
mediators. Handbook of Cell Signaling. Bradshaw RA and Dennis EA:
Second Edition. Academic Press; San Diego: pp. 265–273. 2003,
View Article : Google Scholar
|
4
|
Bresalier RS, Sandler RS, Quan H,
Bolognese JA, Oxenius B, Horgan K, Lines C, Riddell R, Morton D,
Lanas A, Konstam MA and Baron JA: Cardiovascular events associated
with rofecoxib in a colorectal adenoma chemoprevention trial. N
Engl J Med. 352:1092–1102. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
FitzGerald GA: Coxibs and cardiovascular
disease. N Engl J Med. 351:1709–1711. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nussmeier NA, Whelton AA and Brown NT:
Complications of the COX-2 inhibitors parecoxib and waldecoxib
after cardiac surgery. N Engl J Med. 352:1081–1091. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Solomon SD, McMurray JJV, Pfeffer MA,
Wittes J, Fowler R, Finn P, Anderson WF, Zauber A, Hawk E and
Bertagnolli M; Adenoma prevention with celecoxib (APC) study
investigators. Cardiovascular risk associated with celecoxib in a
clinical trial for colorectal adenoma prevention. N Engl J Med.
352:1071–1080. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bavry AA, Khaliq A, Gong Y, Handberg EM,
Cooper-Dehoff RM and Pepine CJ: Harmful effects of NSAIDs among
patients with hypertension and coronary artery disease. Am J Med.
124:614–620. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bertagnolli MM, Hsu M, Hawk ET, Eagle CJ
and Zauber AG: Statin use and colorectal adenoma risk: results from
the adenoma prevention with celecoxib trial. Cancer Prev Res.
3:588–596. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Koller A, Sun D, Huang A and Kaley G:
Corelease of nitric oxide and prostaglandins mediates
flow-dependent dilation of rat gracilis muscle arterioles. Am J
Physiol. 267:H326–H332. 1994.PubMed/NCBI
|
11
|
Ganesan AN, Maack C, Johns DC, Sidor A and
O’Rourke B: Beta-adrenergic stimulation of L-type
Ca2+channels in cardiac myocytes requires the distal
carboxyl terminus of α1Cbut not serine 1928. Circ Res.
98:e11–e18. 2006.PubMed/NCBI
|
12
|
Keef KD, Hume JR and Zhong J: Regulation
of cardiac and smooth muscle Ca2+channels (CaV1.2a,b) by
protein kinases. Am J Physiol Cell Physiol. 281:C1743–C1756.
2001.PubMed/NCBI
|
13
|
Kilic A, Bubikat A, Gassner B, Baba HA and
Kuhn M: Local actions of atrial natriuretic peptide counteract
angiotensin II stimulated cardiac remodeling. Endocrinology.
148:4162–4169. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Münzel T, Feil R, Mülsch A, Lohmann SM,
Hofmann F and Walter U: Physiology and pathophysiology of vascular
signaling controlled by cyclic guanosine 3′,5′-cyclic
monophosphate-dependent protein kinase. Circulation. 108:2172–2183.
2003.
|
15
|
Rybalkin SD, Yan C, Bornfeldt KE and Beavo
JA: Cyclic GMP phosphodiesterases and regulation of smooth muscle
function. Circ Res. 93:280–291. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zaccolo M and Movsesian MA: cAMP and cGMP
signaling cross-talk: role of phosphodiesterases and implications
for cardiac pathophysiology. Circ Res. 100:1569–1578. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Bender AT and Beavo JA: Cyclic nucleotide
phosphodiesterases: molecular regulation to clinical use. Pharmacol
Rev. 58:488–520. 2006. View Article : Google Scholar : PubMed/NCBI
|
18
|
Somlyo AP and Somlyo AV:
Ca2+sensitivity of smooth muscle and nonmuscle myosin
II: modulated by G proteins, kinases, and myosin phosphatase.
Physiol Rev. 83:1325–1358. 2003.
|
19
|
Oberwittler H, Hirschfeld-Warneken A,
Wesch R, Willerich H, Teichert L, Heinz KH, Lehr E, Ding R, Haefeli
WE and Mikus G: Significant pharmacokinetic and pharmacodynamic
interaction of warfarin with the NO-independent sGC activator
HMR1766. J Clin Pharmacol. 47:70–77. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yetik-Anacak G, Xia T, Dimitropoulou C,
Venema RC and Catravas JD: Effects of hsp90 binding inhibitors on
sGC-mediated vascular relaxation. Am J Physiol Heart Circ Physiol.
291:H260–H268. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Herrera M and Garvin JL: Novel role of
AQP-1 in NO-dependent vasorelaxation. Am J Physiol Renal Physiol.
292:F1443–F1451. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Tanaka K and Koyama Y: Endothelins
decrease the expression of aquaporins and plasma membrane water
permeability in cultured rat astrocytes. J Neurosci Res.
89:320–328. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Slupski M, Szadujkis-Szadurski L, Grzesk
G, Szadujkis-Szadurski R, Szadujkis-Szadurska K, Wlodarczyk Z,
Masztalerz M, Piotrowiak I and Jasiński M: Guanylate cyclase
activators influence reactivity of human mesenteric superior
arteries retrieved and preserved in the same conditions as
transplanted kidneys. Transplant Proc. 39:1350–1353. 2007.
View Article : Google Scholar
|
24
|
Chenevard R, Hurlimann D, Bechir M,
Enseleit F, Spieker L, Hermann M and Riesen W: Selective COX-2
inhibition improves endothelial function in coronary artery
disease. Circulation. 107:405–409. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Simionescu M: Implications of early
structural-functional changes in the endothelium for vascular
disease. Arterioscler Thromb Vasc Biol. 27:266–274. 2007.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Foudi N, Kotelevets L, Louedec L, Leseche
G, Henin D, Chastre E and Norel X: Vasorelaxation induced by
prostaglandin E(2) in human pulmonary vein: role of the EP(4)
receptor subtype. Br J Pharmacol. 154:1631–1639. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Grosser T, Fries S and FitzGerald GA:
Biological basis for the cardiovascular consequences of COX-2
inhibition: therapeutic challenges and opportunities. J Clin
Invest. 116:4–15. 2006. View
Article : Google Scholar : PubMed/NCBI
|
28
|
Mamdani M, Juurlink DN, Lee DS, Rochon PA,
Kopp A, Naglie G, Austin PC, Laupacis A and Stukel TA:
Cyclooxygenase-2 inhibitors versus non-selective non-steroidal
anti-inflammatory drugs and congestive heart failure outcomes in
elderly patients: a population-based cohort study. Lancet.
363:1751–1756. 2004. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wolfe F, Zhao S and Pettitt D: Blood
pressure destabilization and edema among 8538 users of celecoxib,
rofecoxib, and nonselective nonsteroidal antiinflammatory drugs
(NSAID) and nonusers of NSAID receiving ordinary clinical care. J
Rheumatol. 31:1143–1151. 2004.
|
30
|
Aw TJ, Haas SJ, Liew D and Krum H:
Meta-analysis of cyclooxygenase-2 inhibitors and their effects on
blood pressure. Arch Intern Med. 165:490–496. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Brinker A, Goldkind L, Bonnel R and Beitz
J: Spontaneous reports of hypertension leading to hospitalisation
in association with rofecoxib, celecoxib, nabumetone and oxaprozin.
Drugs Aging. 21:479–484. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cheng Y, Austin SC, Rocca B, Koller BH,
Coffman TM, Grosser T, Lawson JA and FitzGerald GA: Role of
prostacyclin in the cardiovascular response to thromboxane A2.
Science. 296:539–541. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Klein T, Eltze M, Grebe T, Hatzelmann A
and Kömhoff M: Celecoxib dilates guinea-pig coronaries and rat
aortic rings and amplifies NO/cGMP signaling by PDE5 inhibition.
Cardiovasc Res. 75:390–397. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Francois H, Athirakul K, Howell D, Dash R,
Mao L, Kim HS, Rockman HA, Fitzgerald GA, Koller BH and Coffman TM:
Prostacyclin protects against elevated blood pressure and cardiac
fibrosis. Cell Metab. 2:201–207. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gudbjornsson B, Thorsteinsson SB,
Sigvaldason H, Einarsdottir R, Johannsson M, Zoega H, Halldorsson M
and Thorgeirsson G: Rofecoxib, but not celecoxib, increases the
risk of thromboembolic cardiovascular events in young adults - a
nationwide registry-based study. Eur J Clin Pharmacol. 66:619–625.
2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Akiko H, Kazunao K, Kazuhiko T, Naoki I,
Kazuo U, Kyoichi O and Hiroshi W: Cyclooxygenase-dependent
vasoconstricting factor(s) in remodelled rat femoral arteries.
Cardiovasc Res. 79:161–168. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Flórez A, de Haro J, Martínez E, Varela C,
Bleda S and Acín F: Selective cyclooxygenase-2 inhibition reduces
endothelial dysfunction and improves inflammatory status in
patients with intermittent claudication. Rev Esp Cardiol.
62:851–857. 2009.PubMed/NCBI
|
38
|
Widlansky ME, Price DT, Gokce N, Eberhardt
RT, Duffy SJ, Holbrook M, Maxwell C, Palmisano J, Keaney JF Jr,
Morrow JD and Vita JA: Short- and long-term COX-2 inhibition
reverses endothelial dysfunction in patients with hypertension.
Hypertension. 42:310–315. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Foudi N, Norel X, Rienzo M, Louedec L,
Brink C, Michel JB and Back M: Altered reactivity to norepinephrine
through COX-2 induction by vascular injury in hypercholesterolemic
rabbits. Am J Physiol Heart Circ Physiol. 297:H1882–H1888. 2009.
View Article : Google Scholar : PubMed/NCBI
|