Neuroprotection of microRNA in neurological disorders (Review)
- Authors:
- Chunmei Wang
- Bingyuan Ji
- Baohua Cheng
- Jing Chen
- Bo Bai
-
Affiliations: Neurobiology Institute, Jining Medical University, Jining 272067, P.R. China - Published online on: June 16, 2014 https://doi.org/10.3892/br.2014.297
- Pages: 611-619
This article is mentioned in:
Abstract
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ and Srivastava D: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 129:303–317. 2007. View Article : Google Scholar : PubMed/NCBI | |
Carleton M, Cleary MA and Linsley PS: MicroRNAs and cell cycle regulation. Cell Cycle. 6:2127–2132. 2007. View Article : Google Scholar : PubMed/NCBI | |
Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T and Takahashi T: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64:3753–3756. 2004. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D and Wang Y: Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 24:652–657. 2009. View Article : Google Scholar : PubMed/NCBI | |
van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA and Olson EN: A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA. 103:18255–18260. 2006.PubMed/NCBI | |
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M and Croce CM: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65:7065–7070. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yoon SO, Chun SM, Han EH, Choi J, Jang SJ, Koh SA, Hwang S and Yu E: Deregulated expression of microRNA-221 with the potential for prognostic biomarkers in surgically resected hepatocellular carcinoma. Hum Pathol. 42:1391–1400 | |
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F and Croce CM: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E and Ambros V: Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5:R132004. View Article : Google Scholar | |
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W and Tuschl T: Identification of tissue-specific microRNAs from mouse. Curr Biol. 12:735–739. 2002. View Article : Google Scholar : PubMed/NCBI | |
He X, Zhang Q, Liu Y and Pan X: Cloning and identification of novel microRNAs from rat hippocampus. Acta Biochim Biophys Sin (Shanghai). 39:708–714. 2007. View Article : Google Scholar : PubMed/NCBI | |
Natera-Naranjo O, Aschrafi A, Gioio AE and Kaplan BB: Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA. 16:1516–1529. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM and Storm DR: Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 20:492–498. 2010.PubMed/NCBI | |
Sano T, Reynolds JP, Jimenez-Mateos EM, Matsushima S, Taki W and Henshall DC: MicroRNA-34a upregulation during seizure-induced neuronal death. Cell Death Dis. 3:e2872012. View Article : Google Scholar : PubMed/NCBI | |
Dirnagl U, Becker K and Meisel A: Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 8:398–412. 2009. View Article : Google Scholar : PubMed/NCBI | |
Dhodda VK, Sailor KA, Bowen KK and Vemuganti R: Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem. 89:73–89. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dharap A and Vemuganti R: Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. J Neurochem. 113:1685–1691. 2010.PubMed/NCBI | |
Lee ST, Chu K, Jung KH, Yoon HJ, Jeon D, Kang KM, Park KH, Bae EK, Kim M, Lee SK and Roh JK: MicroRNAs induced during ischemic preconditioning. Stroke. 41:1646–1651. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lusardi TA, Farr CD, Faulkner CL, Pignataro G, Yang T, Lan J, Simon RP and Saugstad JA: Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab. 30:744–756. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dharap A, Bowen K, Place R, Li LC and Vemuganti R: Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 29:675–687. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yin KJ, Deng Z, Huang H, Hamblin M, Xie C, Zhang J and Chen YE: miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol Dis. 38:17–26. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pandi G, Nakka VP, Dharap A, Roopra A and Vemuganti R: MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One. 8:e580392013. View Article : Google Scholar : PubMed/NCBI | |
Xu WH, Yao XY, Yu HJ, Huang JW and Cui LY: Downregulation of miR-199a may play a role in 3-nitropropionic acid induced ischemic tolerance in rat brain. Brain Res. 1429:116–123. 2013. View Article : Google Scholar : PubMed/NCBI | |
Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R and Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature. 455:58–63. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ricarte Filho JC and Kimura ET: MicroRNAs: novel class of gene regulators involved in endocrine function and cancer. Arq Bras Endocrinol Metabol. 50:1102–1107. 2006.PubMed/NCBI | |
Hu JR, Lv GH and Yin BL: Altered microRNA expression in the ischemic-reperfusion spinal cord with atorvastatin therapy. J Pharmacol Sci. 121:343–346. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M and Croce CM: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Feng C, Li L and Zuo Z: Contribution of microRNA-203 to the isoflurane preconditioning-induced neuroprotection. Brain Res Bull. 88:525–528. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kocerha J, Kauppinen S and Wahlestedt C: microRNAs in CNS disorders. Neuromolecular Med. 11:162–172. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW and Jeyaseelan K: Expression profile of MicroRNAs in young stroke patients. PLoS One. 4:e76892009. View Article : Google Scholar : PubMed/NCBI | |
Tan JR, Tan KS, Koo YX, Yong FL, Wang CW, Armugam A and Jeyaseelan K: Blood microRNAs in low or no risk ischemic stroke patients. Int J Mol Sci. 14:2072–2084. 2013. View Article : Google Scholar : PubMed/NCBI | |
Siegel C, Li J, Liu F, Benashski SE and McCullough LD: miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci USA. 108:11662–11667. 2011. View Article : Google Scholar : PubMed/NCBI | |
Harraz MM, Eacker SM, Wang X, Dawson TM and Dawson VL: MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci USA. 109:18962–18967. 2012. View Article : Google Scholar : PubMed/NCBI | |
Witwer KW, Sisk JM, Gama L and Clements JE: MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response. J Immunol. 184:2369–2376. 2010. View Article : Google Scholar : PubMed/NCBI | |
Selvamani A, Sathyan P, Miranda RC and Sohrabji F: An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One. 7:e326622012. View Article : Google Scholar : PubMed/NCBI | |
Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A, Chopp M and Zhang ZG: MicroRNA-21 protects neurons from ischemic death. FEBS J. 277:4299–4307. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ouyang YB, Lu Y, Yue S, Xu LJ, Xiong XX, White RE, Sun X and Giffard RG: miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis. 45:555–563. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, Hozeska-Solgot A, Zhang L, Chen C and Zhang ZG: MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One. 6:e234612011. View Article : Google Scholar : PubMed/NCBI | |
Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, Zheng C, Cheng Q, Chen S and Yang GY: MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci (Elite Ed). 3:1265–1272. 2011.PubMed/NCBI | |
Rink C and Khanna S: MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics. 43:521–528. 2011. View Article : Google Scholar : PubMed/NCBI | |
Eacker SM, Dawson TM and Dawson VL: Understanding microRNAs in neurodegeneration. Nat Rev Neurosci. 10:837–841. 2009.PubMed/NCBI | |
Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A and De Strooper B: Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA. 105:6415–6420. 2008.PubMed/NCBI | |
Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD and Richards CA: Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis. 14:27–41. 2008. | |
Boissonneault V, Plante I, Rivest S and Provost P: MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem. 284:1971–1981. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I and Nelson PT: The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 28:1213–1223. 2008.PubMed/NCBI | |
Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT, Lee JC and Saunders AJ: MicroRNAs can regulate human APP levels. Mol Neurodegener. 3:102008. View Article : Google Scholar : PubMed/NCBI | |
Lukiw WJ, Zhao Y and Cui JG: An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem. 283:31315–31322. 2008. View Article : Google Scholar : PubMed/NCBI | |
Croce N, Gelfo F, Ciotti MT, Federici G, Caltagirone C, Bernardini S and Angelucci F: NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection? Mol Cell Biochem. 376:189–195. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harraz MM, Dawson TM and Dawson VL: MicroRNAs in Parkinson’s disease. J Chem Neuroanat. 42:127–130. 2011. | |
Mouradian MM: MicroRNAs in Parkinson’s disease. Neurobiol Dis. 46:279–284. 2012. | |
Doxakis E: Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem. 285:12726–12734. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martins M, Rosa A, Guedes LC, Fonseca BV, Gotovac K, Violante S, Mestre T, Coelho M, Rosa MM, Martin ER, Vance JM, Outeiro TF, Wang L, Borovecki F, Ferreira JJ and Oliveira SA: Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson’s disease. PLoS One. 6:e254432011. | |
Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G and Abeliovich A: A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 317:1220–1224. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang G, van der Walt JM, Mayhew G, Li YJ, Züchner S, Scott WK, Martin ER and Vance JM: Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet. 82:283–289. 2008. View Article : Google Scholar : PubMed/NCBI | |
Margis R, Margis R and Rieder CR: Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol. 152:96–101. 2011. | |
Packer AN, Xing Y, Harper SQ, Jones L and Davidson BL: The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci. 28:14341–14346. 2008.PubMed/NCBI | |
Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M and Roh JK: Altered microRNA regulation in Huntington’s disease models. Exp Neurol. 227:172–179. 2011. | |
Zuccato C, Belyaev N, Conforti P, Ooi L, Tartari M, Papadimou E, MacDonald M, Fossale E, Zeitlin S, Buckley N and Cattaneo E: Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington’s disease. J Neurosci. 27:6972–6983. 2007.PubMed/NCBI | |
Seredenina T, Gokce O and Luthi-Carter R: Decreased striatal RGS2 expression is neuroprotective in Huntington’s disease (HD) and exemplifies a compensatory aspect of HD-induced gene regulation. PLoS One. 6:e222312011. | |
Landles C and Bates GP: Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep. 5:958–963. 2004. | |
Jovicic A, Zaldivar Jolissaint JF, Moser R, Silva Santos Mde F and Luthi-Carter R: MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One. 8:e542222013.PubMed/NCBI | |
Christensen M, Larsen LA, Kauppinen S and Schratt G: Recombinant adeno-associated virus-mediated microRNA delivery into the postnatal mouse brain reveals a role for miR-134 in dendritogenesis in vivo. Front Neural Circuits. 3:162010.PubMed/NCBI | |
Gao J, Wang WY, Mao YW, Gräff J, Guan JS, Pan L, Mak G, Kim D, Su SC and Tsai LH: A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 466:1105–1109. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN, Long LL, Feng L, Li Y and Xiao B: MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 13:1152012. View Article : Google Scholar : PubMed/NCBI | |
Kan AA, van Erp S, Derijck AA, de Wit M, Hessel EV, O’Duibhir E, de Jager W, Van Rijen PC, Gosselaar PH, de Graan PN and Pasterkamp RJ: Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci. 69:3127–3145. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peng J, Omran A, Ashhab MU, Kong H, Gan N, He F and Yin F: Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci. 50:291–297. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jimenez-Mateos EM, Bray I, Sanz-Rodriguez A, Engel T, McKiernan RC, Mouri G, Tanaka K, Sano T, Saugstad JA, Simon RP, Stallings RL and Henshall DC: miRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Am J Pathol. 179:2519–2532. 2011. View Article : Google Scholar : PubMed/NCBI | |
Redell JB, Liu Y and Dash PK: Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. J Neurosci Res. 87:1435–1448. 2009. View Article : Google Scholar | |
Redell JB, Zhao J and Dash PK: Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J Neurosci Res. 89:212–221. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jee MK, Jung JS, Im YB, Jung SJ and Kang SK: Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther. 23:508–520. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB and Kang SK: MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain. 135:1237–1252. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Yu D, Almeida-Suhett C, Tu K, Marini AM, Eiden L, Braga MF, Zhu J and Li Z: Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury. PLoS One. 7:e393572012. View Article : Google Scholar : PubMed/NCBI |