1
|
Spiegel S and Merrill AH Jr: Sphingolipid
metabolism and cell growth regulation. FASEB J. 10:1388–1397.
1996.PubMed/NCBI
|
2
|
Merrill AH Jr, Schmelz EM, Wang E, et al:
Importance of sphingolipids and inhibitors of sphingolipid
metabolism as components of animal diets. J Nutr. 127 (Suppl
5):S830–S833. 1997.
|
3
|
Hannun YA and Obeid LM: The
Ceramide-centric universe of lipid-mediated cell regulation: stress
encounters of the lipid kind. J Biol Chem. 277:25847–25850. 2002.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Levade T, Malagarie-Cazenave S, Gouaze V,
et al: Ceramide in apoptosis: a revisited role. Neurochem Res.
27:601–607. 2002. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kolesnick R and Fuks Z: Radiation and
ceramide-induced apoptosis. Oncogene. 22:5897–5906. 2003.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Cuvillier O: Sphingosine in apoptosis
signaling. Biochim Biophys Acta. 1585:153–162. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xu R, Jin J, Hu W, et al: Golgi alkaline
ceramidase regulates cell proliferation and survival by controlling
levels of sphingosine and S1P. FASEB J. 20:1813–1825. 2006.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Cuvillier O, Pirianov G, Kleuser B, et al:
Suppression of ceramide-mediated programmed cell death by
sphingosine-1-phosphate. Nature. 381:800–803. 1996. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu R, Sun W, Jin J, Obeid LM and Mao C:
Role A of alkaline ceramidases in the generation of sphingosine and
its phosphate in erythrocytes. FASEB J. 24:2507–2515. 2010.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun W, Hu W, Xu R, et al: Alkaline
ceramidase 2 regulates beta1 integrin maturation and cell adhesion.
FASEB J. 23:656–666. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jin J, Zhang X, Lu Z, et al: Acid
sphingomyelinase plays a key role in palmitic acid-amplified
inflammatory signaling triggered by lipopolysaccharide at low
concentrations in macrophages. Am J Physiol Endocrinol Metab.
305:E853–E867. 2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhu Q, Lin L, Cheng Q, et al: The role of
acid sphingomyelinase and caspase 5 in hypoxia-induced HuR cleavage
and subsequent apoptosis in hepatocytes. Biochim Biophys Acta.
1821:1453–1461. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
O'Neill SM, Houck KL, Yun JK, Fox TE and
Kester M: AP-1 binding transcriptionally regulates human neutral
ceramidase. Arch Biochem Biophys. 511:31–39. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang C, Ma WY, Dawson MI, Rincon M,
Flavell RA and Dong Z: Blocking activator protein-1 activity, but
not activating retinoic acid response element, is required for the
antitumor promotion effect of retinoic acid. Proc Natl Acad Sci
USA. 94:5826–5830. 1997. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li JJ, Westergaard C, Ghosh P and Colburn
NH: Inhibitors of both nuclear factor-kappa B and activator
protein-1 activation block the neoplastic transformation response.
Cancer Res. 57:3569–3576. 1997.PubMed/NCBI
|
16
|
Fisch TM, Prywes R and Roeder RG: An
AP1-binding site in the c-fos gene can mediate induction by
epidermal growth factor and 12-O-tetradecanoyl phorbol-13-acetate.
Mol Cell Biol. 9:1327–1331. 1989.PubMed/NCBI
|
17
|
Whitmarsh AJ and Davis RJ: Transcription
factor AP-1 regulation by mitogen-activated protein kinase signal
transduction pathways. J Mol Med (Berl). 74:589–607. 1996.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun W, Jin J, Xu R, et al: Substrate
specificity, membrane topology, and activity regulation of human
alkaline ceramidase 2 (ACER2). J Biol Chem. 285:8995–9007. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Bellofatto V and Wilusz J: Transcription
and mRNA stability: parental guidance suggested. Cell.
147:1438–1439. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hess J, Angel P and Schorpp-Kistner M:
AP-1 subunits: quarrel and harmony among siblings. J Cell Sci.
117:5965–5973. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Karin M: The regulation of AP-1 activity
by mitogen-activated protein kinases. J Biol Chem. 270:16483–16486.
1995. View Article : Google Scholar : PubMed/NCBI
|
22
|
Harrington EA, Fanidi A and Evan GI:
Oncogenes and cell death. Curr Opin Genet Dev. 4:120–129. 1994.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Dang CV and Semenza GL: Oncogenic
alterations of metabolism. Trends Biochem Sci. 24:68–72. 1999.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Xiong Y, Fang JH, Yun JP, et al: Effects
of micro RNA-29 on apoptosis, tumorigenicity, and prognosis of
hepatocellular carcinoma. Hepatology. 51:836–845. 2010.PubMed/NCBI
|
25
|
Graveel CR, Jatkoe T, Madore SJ, Holt AL
and Farnham PJ: Expression profiling and identification of novel
genes in hepatocellular carcinomas. Oncogene. 20:2704–2712. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Frevel MA, Bakheet T, Silva AM, Hissong
JG, Khabar KS and Williams BR: p 38 Mitogen-activated protein
kinase-dependent and -independent signaling of mRNA stability of
AU-rich element-containing transcripts. Mol Cell Biol. 23:425–436.
2003. View Article : Google Scholar : PubMed/NCBI
|